Turn off MathJax
Article Contents
ZHANG Lang, ZHAO Fengpeng, ZHANG Yuzhong, DENG Yongjun, LI Jicheng. Ballistic performance of tungsten fiber-reinforced metallic glass composite in the long rod oblique penetration/perforation[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0158
Citation: ZHANG Lang, ZHAO Fengpeng, ZHANG Yuzhong, DENG Yongjun, LI Jicheng. Ballistic performance of tungsten fiber-reinforced metallic glass composite in the long rod oblique penetration/perforation[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0158

Ballistic performance of tungsten fiber-reinforced metallic glass composite in the long rod oblique penetration/perforation

doi: 10.11883/bzycj-2024-0158
  • Received Date: 2024-05-27
  • Rev Recd Date: 2024-07-18
  • Available Online: 2024-07-19
  • Combined with the actual distribution characteristics of tungsten fibers and metallic glass matrix, a three-dimensional (3D) mesoscale finite element (FE) geometric model of a long rod of tungsten fiber-reinforced metallic glass composite was established, and the coupled thermo-mechanical constitutive model was used to describe the high strength and high shear sensitivity of metallic glass matrix. FE simulations on the oblique penetration/perforation of composite and tungsten alloy long rods into steel targets were carried out combined with related oblique penetrating tests, and comparative analyses on the deformation and failure characteristics of projectiles and targets were conducted. Furthermore, the influences of oblique angle and impact velocity on the ‘self-sharpening’ behavior of composite long rods and the corresponding ballistic performance were investigated in detail. Related analysis shows that in the oblique impact condition, due to the asymmetrical characteristics of target resistance on the rod, the rod nose gradually sharpens into an asymmetrical pointed configuration, and certain deflection occurs in the trajectory. Consequently, the ‘self-sharpening’ behavior in the composite long rod is weakened to a certain extent, and thus a decay occurs in its penetrating property. Besides, the impact velocity also contributes to the ‘self-sharpening’ characteristics and the corresponding ballistic behavior in the oblique impact condition, and the decay of penetrating capability derived from the oblique angle is more remarkable at lower impact velocities. When the oblique angle increases to 50°, the composite long rod is hard to effectively penetrate the target at an impact velocity lower than 900 m/s, and ricochet becomes easy when it impacts under a higher oblique angle. The results are of good significance in predicting the penetrating ability of tungsten fiber-reinforced metallic glass matrix composite long rods and optimizing its impact attitude.
  • loading
  • [1]
    CAI W D, LI Y, DOWDING R J, et al. A review of tungsten-based alloys as kinetic energy penetrator materials [J]. Reviews in Particulate Materials, 1995, 3: 71–131. DOI: 10.1108/13552549510104456.
    [2]
    MAGNESS L S. High strain rate deformation behaviors of kinetic energy penetrator materials during ballistic impact [J]. Mechanics of Materials, 1994, 17(2/3): 147–154. DOI: 10.1016/0167-6636(94)90055-8.
    [3]
    BLEISE A, DANESI P R, BURKART W. Properties, use and health effects of depleted uranium (DU): a general overview [J]. Journal of Environmental Radioactivity, 2003, 64(2/3): 93–112. DOI: 10.1016/s0265-931x(02)00041-3.
    [4]
    李继承, 陈小伟. 块体金属玻璃及其复合材料的压缩剪切特性和侵彻/穿甲“自锐”行为 [J]. 力学进展, 2011, 41(5): 480–518. DOI: 10.6052/1000-0992-2011-5-lxjzJ2011-056.

    LI J C, CHEN X W. Compressive-shear behavior and self-sharpening of bulk metallic glasses and their composite materials [J]. Advances in Mechanics, 2011, 41(5): 480–518. DOI: 10.6052/1000-0992-2011-5-lxjzJ2011-056.
    [5]
    DAI L H, BAI Y L. Basic mechanical behaviors and mechanics of shear banding in BMGs [J]. International Journal of Impact Engineering, 2008, 35(8): 704–716. DOI: 10.1016/j.ijimpeng.2007.10.007.
    [6]
    GREER A L, CHENG Y Q, MA E. Shear bands in metallic glasses [J]. Materials Science and Engineering R: Reports, 2013, 74(4): 71–132. DOI: 10.1016/j.mser.2013.04.001.
    [7]
    CONNER R D, DANDLIKER R B, SCRUGGS V, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites [J]. International Journal of Impact Engineering, 2000, 24(5): 435–444. DOI: 10.1016/s0734-743x(99)00176-1.
    [8]
    CHOI-YIM H, CONNER R D, SZUECS F, et al. Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites [J]. Scripta Materialia, 2001, 45(9): 1039–1045. DOI: 10.1016/s1359-6462(01)01134-4.
    [9]
    雷波. 钨纤维复合材料穿甲弹芯自锐行为的试验研究 [D]. 沈阳: 沈阳理工大学, 2008.
    [10]
    荣光, 黄德武. 钨纤维复合材料穿甲弹芯侵彻时的自锐现象 [J]. 爆炸与冲击, 2009, 29(4): 351–355. DOI: 10.11883/1001-1455(2009)04-0351-05.

    RONG G, HUANG D W. Self-sharpening phenomena of tungsten fiber composite material penetrators during penetration [J]. Explosion and Shock Waves, 2009, 29(4): 351–355. DOI: 10.11883/1001-1455(2009)04-0351-05.
    [11]
    RONG G, HUANG D W, YANG M C. Penetrating behaviors of Zr-based metallic glass composite rods reinforced by tungsten fibers [J]. Theoretical and Applied Fracture Mechanics, 2012, 58(1): 21–27. DOI: 10.1016/j.tafmec.2012.02.003.
    [12]
    陈小伟, 李继承, 张方举, 等. 钨纤维增强金属玻璃复合材料弹穿甲钢靶的实验研究 [J]. 爆炸与冲击, 2012, 32(4): 346–354. DOI: 10.11883/1001-1455(2012)04-0346-09.

    CHEN X W, LI J C, ZHANG F J, et al. Experimental research on the penetration of tungsten-fiber/metallic glass-matrix composite material penetrator into steel target [J]. Explosion and Shock Waves, 2012, 32(4): 346–354. DOI: 10.11883/1001-1455(2012)04-0346-09.
    [13]
    夏龙祥. 钨纤维增强块体金属非晶复合材料侵彻行为研究 [D]. 南京: 南京理工大学, 2013.
    [14]
    CHEN X W, WEI L M, LI J C. Experimental research on the long rod penetration of tungsten-fiber/Zr-based metallic glass matrix composite into Q235 steel target [J]. International Journal of Impact Engineering, 2015, 79: 102–116. DOI: 10.1016/j.ijimpeng.2014.11.007.
    [15]
    LI J C, CHEN X W, HUANG F L. FEM analysis on the “self-sharpening” behavior of tungsten fiber/metallic glass matrix composite long rod [J]. International Journal of Impact Engineering, 2015, 86: 67–83. DOI: 10.1016/j.ijimpeng.2015.07.006.
    [16]
    LI J C, CHEN X W, HUANG F L. FEM analysis on the deformation and failure of fiber reinforced metallic glass matrix composite [J]. Materials Science and Engineering: A, 2016, 652: 145–166. DOI: 10.1016/j.msea.2015.11.051.
    [17]
    DU C, SHU D, DU Z, et al. Effect of L/D on penetration performance of tungsten fibre/Zr-based bulk metallic glass matrix composite rod [J]. International Journal of Refractory Metals and Hard Materials, 2019, 85: 105042. DOI: 10.1016/j.ijrmhm.2019.105042.
    [18]
    杜成鑫. Wf/Zr基非晶复合材料杆弹准细观侵彻机理及优化设计 [D]. 南京: 南京理工大学, 2019.

    DU C X. Research on penetration mechanism and optimization design of Wf/Zr-based bulk metallic glass matrix composite rod [D]. Nanjing: Nanjing University of Science & Technology, 2019.
    [19]
    ZHOU F, DU C X, DU Z H, et al. Penetration gain study of a tungsten-fiber/Zr-based metallic glass matrix composite [J]. Crystals, 2022, 12(2): 284. DOI: 10.3390/cryst12020284.
    [20]
    ZHOU F, DU C X, CHENG C, et al. Penetration performance and fragmentation mechanism behind target of tungsten fibre/zirconium-based bulk metallic glass matrix composite rod [J]. International Journal of Refractory Metals and Hard Materials, 2023, 112: 106160. DOI: 10.1016/j.ijrmhm.2023.106160.
    [21]
    吴烁罡, 杜成鑫, 周峰, 等. 钨丝/锆基非晶复合材料与93W合金弹芯侵彻靶板的损伤特征 [J]. 爆炸与冲击, 2024, 44(4): 043302. DOI: 10.11883/bzycj-2023-0312.

    WU S G, DU C X, ZHOU F, et al. Damage characteristic of target penetrated by WF/Zr-MG and 93W rods [J]. Explosion and Shock Waves, 2024, 44(4): 043302. DOI: 10.11883/bzycj-2023-0312.
    [22]
    LI J C, CHEN X W, HUANG F L. On the mechanical properties of particle reinforced metallic glass matrix composites [J]. Journal of Alloys and Compounds, 2018, 737: 271–294. DOI: 10.1016/j.jallcom.2017.12.024.
    [23]
    LI J C, CHEN X W, HUANG F L. Ballistic performance of tungsten particle/metallic glass matrix composite long rod [J]. Defence Technology, 2019, 15(2): 132–145. DOI: 10.1016/j.dt.2018.06.009.
    [24]
    陈建良, 李继承. 钨纤维增强金属玻璃复合材料分段弹体侵彻性能研究 [J]. 爆炸与冲击, 2020, 40(6): 063201. DOI: 10.11883/bzycj-2019-0379.

    CHEN J L, LI J C. Ballistic behavior of tungsten fiber/metallic glass matrix composite segmented rods [J]. Explosion and Shock Waves, 2020, 40(6): 063201. DOI: 10.11883/bzycj-2019-0379.
    [25]
    LI J C, WEI Q, CHEN X W, et al. On the mechanism of deformation and failure in bulk metallic glasses [J]. Materials Science and Engineering: A, 2014, 610: 91–105. DOI: 10.1016/j.msea.2014.04.106.
    [26]
    LI J C, CHEN X W, HUANG F L. Inhomogeneous deformation in bulk metallic glasses: FEM analysis [J]. Materials Science and Engineering: A, 2015, 620: 333–351. DOI: 10.1016/j.msea.2014.10.013.
    [27]
    GOLDSMITH W. Non-ideal projectile impact on targets [J]. International Journal of Impact Engineering, 1999, 22(2/3): 95–395. DOI: 10.1016/S0734-743X(98)00031-1.
    [28]
    ANDERSON C E JR. Analytical models for penetration mechanics: a review [J]. International Journal of Impact Engineering, 2017, 108: 3–26. DOI: 10.1016/j.ijimpeng.2017.03.018.
    [29]
    ZHANG H F, LI H, WANG A M, et al. Synthesis and characteristics of 80 vol.% tungsten (W) fibre/Zr based metallic glass composite [J]. Intermetallics, 2009, 17(12): 1070–1077. DOI: 10.1016/j.intermet.2009.05.011.
    [30]
    JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperature [C]//Proceedings of the seventh International Symposium on Ballistics. Hague: International Ballistics Committee, 1983: 541–547.
    [31]
    JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [32]
    WANG L L, YANG L M, DONG X L, et al. Dynamics of materials: experiments, models and applications [M]. Amsterdam: Elsevier, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views (112) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return