• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
GUO Liuwei, LIU Yusi, WANG Wei, HE Yu, GUI Yulin. The effect of the flying gap of the metal flyer on the run distance to detonation of TATB-based explosives[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0163
Citation: GUO Liuwei, LIU Yusi, WANG Wei, HE Yu, GUI Yulin. The effect of the flying gap of the metal flyer on the run distance to detonation of TATB-based explosives[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0163

The effect of the flying gap of the metal flyer on the run distance to detonation of TATB-based explosives

doi: 10.11883/bzycj-2024-0163
  • Received Date: 2024-05-28
  • Rev Recd Date: 2024-09-10
  • Available Online: 2024-09-12
  • To discuss the flying gap effect of the metal flyer on the initiating behavior for TATB-based explosives, initiation experiments for PBX-6 and PBXL-7 were performed. The target velocity and shape of the flyer to explosives were obtained using a 1 550 nm photon Doppler velocimetry. The running distance to detonation (RDTD) of explosive samples was gained by a Terahertz-wave Doppler interferometric velocimetry at the center point. The relationship between the experiment data captured above was analyzed. It reveals that the running distance to detonation of the TATB-based explosive changes non-monotonously with the increase of gap. With the gap increasing from zero to 20 mm, there are five stages. The initial stage is named S0, the flyer velocity declining stage is named S1, the free running stage of spallation is named S2, the remerging stage when the main flyer catches up and remerging with its spallation layer is named S3, and the stage when the main flyer and spallation are united as one is named S4. The RDTD for the TATB-based explosive is the smallest when the flyer velocity comes to stage S4, the RDTD at stage S0 is the next, and the RDTD at the velocity declining stage S1 and remerging stage S3 are the worst together. These experiment results suggest that the initiating performance of TATB-based explosives impacted by the flyer is not always better than the gap layer results. The initiation mechanism of explosives by flyer under different gaps is probably related to the target velocity together with the structure of the flyer. The simplex target velocity rising of flyer can’t always make the running distance to detonation of TATB-based explosives shorter. The initiation mechanism of TATB-based explosives impacted by flyer is more complex than the gap layer, requiring much experiment data and numerical simulation for further discussion.
  • loading
  • [1]
    孙承纬, 文尚刚, 赵峰. 多级炸药爆轰高速驱动技术的Gurney模型优化分析 [J]. 爆炸与冲击, 2004, 24(4): 299–304. DOI: 10.11883/1001-1455(2004)04-0299-6.

    SUN C W, WEN S G, ZHAO F. An optimal analysis of multi-stage explosive accelerated high velocity flyers with the improved Gurney model [J]. Explosion and Shock Waves, 2004, 24(4): 299–304. DOI: 10.11883/1001-1455(2004)04-0299-6.
    [2]
    经福谦, 陈俊详. 动高压原理与技术 [M]. 北京: 国防工业出版社, 2006: 139–150.
    [3]
    BARBOUR R T. Pyrotechnics in industry [M]. New York: McGraw-Hill, 1981: 89.
    [4]
    SCHIMMEL M L. Quantitative understanding of explosive stimulus transfer: NASA-CR-2341 [R]. Washington: NASA, 1973: 5.
    [5]
    翟志强, 王凯民, 蔡瑞娇, 等. 小型雷管输出能力增强技术研究 [J]. 火工品, 2004(2): 12–15. DOI: 10.3969/j.issn.1003-1480.2004.02.004.

    ZHAI Z Z, WANG K M, CAI R J, et al. Experimental study of shock initiation by flyer plate impact in explosive train [J]. Initiators & Pyrotechnics, 2004(2): 12–15. DOI: 10.3969/j.issn.1003-1480.2004.02.004.
    [6]
    任志伟. 飞片冲击起爆炸药的数值模拟研究 [D]. 北京: 北京理工大学, 2018. DOI: 10.26948/d.cnki.gbjlu.2018.000406.

    REN Z W. Research on the numerical simulation of shock initiation HNS-IV by flyer [D]. Beijing: Beijing Institute of Technology, 2018. DOI: 10.26948/d.cnki.gbjlu.2018.000406.
    [7]
    孙承纬, 卫玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000: 421–426.
    [8]
    GUSTAVSEN R L, GEHR R J, BUCHOLTZ S M, et al. Shock initiation of the tri-amino-tri-nitro-benzene based explosive PBX 9502 cooled to −55℃ [J]. Journal of Applied Physics, 2012, 112(7): 074909. DOI: 10.1063/1.4757599.
    [9]
    吕军军, 曾庆轩, 李明愉, 等. 起爆高密度TATB炸药的飞片速度阈值 [J]. 爆炸与冲击, 2014, 34(1): 125–128. DOI: 10.11883/1001-1455(2014)01-0125-04.

    LÜ J J, ZENG Q X, LI M Y, et al. Threshold impact velocity for detonation initiation in high-density TATB explosive by flyer [J]. Explosion and Shock Waves, 2014, 34(1): 125–128. DOI: 10.11883/1001-1455(2014)01-0125-04.
    [10]
    郭俊峰, 曾庆轩, 李明愉, 等. 叠氮化铜驱动飞片起爆HNS-IV的研究 [J]. 火工品, 2015(6): 1–4.

    GUO J F, ZENG Q X, LI M Y, et al. Study on HNS-IV initiated by flyer driven by cupric azide [J]. Initiators & Pyrotechnics, 2015(6): 1–4.
    [11]
    郭俊峰, 曾庆轩, 李明愉, 等. 飞片材料对微装药驱动飞片形貌的影响 [J]. 高压物理学报, 2017, 31(3): 315–320. DOI: 10.11858/gywlxb.2017.03.014.

    GUO J F, ZENG Q X, LI M Y, et al. Influence of flyer material on morphology of flyer driven by micro charge [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 315–320. DOI: 10.11858/gywlxb.2017.03.014.
    [12]
    虞德水, 赵锋, 谭多望, 等. JOB-9003和JB-9014炸药平面爆轰驱动飞片的对比研究 [J]. 爆炸与冲击, 2006, 12(2): 140–144. DOI: 10.11883/1001-1455(2006)02-0140-05.

    YU D S, ZHAO F, TAN D W, et al. Experimental studies on detonation driving behavior of JOB-9003 and JB-9014 slab explosives [J]. Explosion and Shock Waves, 2006, 12(2): 140–144. DOI: 10.11883/1001-1455(2006)02-0140-05.
    [13]
    虞德水, 赵锋, 彭其先, 等. 激光速度干涉仪在大板实验中的应用研究 [J]. 含能材料, 2011, 19(5): 532–535. DOI: 10.3969/j.issn.1006-9941.2011.05.011.

    YU D S, ZHAO F, PENG Q X, et al. Application of VISAR in bigplate experiment [J]. Chinese Journal of Energetic Materials, 2011, 19(5): 532–535. DOI: 10.3969/j.issn.1006-9941.2011.05.011.
    [14]
    姜洋, 孙承纬, 李平, 等. 点起爆炸药驱动平板飞片运动的数值模拟研究 [J]. 高压物理学报, 2009, 23(4): 261–265. DOI: 10.11858/gywlxb.2009.04.004.

    JIANG Y, SUN C W, LI P, et al. Numerical simulation of the motion of flyer driven by slab explosive initiated at centered point [J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 261–265. DOI: 10.11858/gywlxb.2009.04.004.
    [15]
    陈清畴, 刘刚, 马弢. 飞片初始形状对雷管起爆能力的影响 [J]. 火工品, 2020(1): 6–9. DOI: 10.3969/j.issn.1003-1480.2020.01.002.

    CHEN Q C, LIU G, MA T. Effects of the flyer shape on detonator output [J]. Initiators & Pyrotechnics, 2020(1): 6–9. DOI: 10.3969/j.issn.1003-1480.2020.01.002.
    [16]
    陈清畴, 马弢, 李勇. HNS-Ⅳ炸药驱动飞片速度及形态的数值模拟 [J]. 含能材料, 2018, 26(10): 814–819. DOI: 10.11943/CJEM2018054.

    CHEN Q C, MA T, LI Y. Numerical simulation of velocity and shape of the flyer driven by HNS-Ⅳ explosive [J]. Chinese Journal of Energetic Materials, 2018, 26(10): 814–819. DOI: 10.11943/CJEM2018054.
    [17]
    贺翔, 杨立欣, 董海平, 等. 叠氮化铅驱动飞片起爆下级装药的试验研究 [J]. 弹箭与制导学报, 2023, 43(1): 63–69. DOI: 10.15892/j.cnki.djzdxb.2023.01.009.

    HE X, YANG L X, DONG H P, et al. Experimental study on flyer driven by lead azide to cetonate booster charge [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2023, 43(1): 63–69. DOI: 10.15892/j.cnki.djzdxb.2023.01.009.
    [18]
    TARVER C M. Detonation reaction zones in condensed explosives [J]. AIP Conference Proceedings, 2006, 845(1): 1026–1029. DOI: 10.1063/1.2263497.
    [19]
    GUSTAVSEN R L, BARTRAM B D, SANCHEZ N J. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon Doppler velocimetry [J]. AIP Conference Proceedings, 2009, 1195(1): 253–256. DOI: 10.1063/1.3295117.
    [20]
    ZHAI Z H, SUN C L, LIU Q, et al. Design of terahertz-wave Doppler interferometric velocimetry for detonation physics [J]. Applied Physics Letters, 2020, 116(16): 161102. DOI: 10.1063/1.5142415.
    [21]
    郭刘伟, 翟召辉, 韩秀凤, 等. 环境温度对TATB/RDX传爆药起爆及驱动性能的影响 [J]. 爆炸与冲击, 2024, 44(1): 012301. DOI: 10.11883/bzycj-2023-0192.

    GUO L W, ZHAI Z H, HAN X F, et al. Temperature effect on the shock initiation and metal accelerating behavior for TATB/RDX-based explosive [J]. Explosion and Shock Waves, 2024, 44(1): 012301. DOI: 10.11883/bzycj-2023-0192.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (124) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return