Turn off MathJax
Article Contents
RUAN Hongwei, FAN Siyu, ZENG Ling, JIANG Jianxin, ZHANG Anqiang. Research progress on the mechanism of explosion impact injury and protective materials[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0197
Citation: RUAN Hongwei, FAN Siyu, ZENG Ling, JIANG Jianxin, ZHANG Anqiang. Research progress on the mechanism of explosion impact injury and protective materials[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0197

Research progress on the mechanism of explosion impact injury and protective materials

doi: 10.11883/bzycj-2024-0197
  • Received Date: 2024-06-21
  • Rev Recd Date: 2024-10-20
  • Available Online: 2024-10-22
  • Explosion shock injury is a major public health problem facing China, characterized by high incidence rate, mass occurrence, and difficulty in prevention, with many critical injuries, high infection rates, and difficult diagnosis and treatment. Effective protection against explosive shock injuries is superior to any reliable treatment. Explosion shock injury protection is a complex problem involving multiple disciplines such as medicine, materials science, and explosion shock mechanics. It requires establishing relationships between the propagation of explosion shock waves, injury assessment, material design and preparation, and evaluation of material attenuation performance. Based on this, starting from the generation, propagation of explosion shock wave and the occurrence mechanism of explosion shock injury, this paper introduces the injury mechanism of lung and brain explosion injury, gives the injury mechanics indexes of different degrees of lung and brain explosion injury, systematically reviews the research status and progress of protective materials for explosion shock injury, discusses the protection mechanism of different materials, and focuses on the widely used protective materials for explosion shock wave, such as porous materials, hydrogels, polyurea, etc. In addition, in response to the problem of inconsistent evaluation methods for the attenuation of explosive shock wave performance of protective materials, a comprehensive investigation was conducted on the evaluation methods of material attenuation of explosive shock wave performance, such as biological evaluation method, lead testing method, etc., and the advantages and disadvantages of various evaluation methods were analyzed. Finally, the development trends in the evaluation of explosion shock wave protection performance, the scale relationship between animal explosion shock injury severity and material protection performance and personnel protection, and the relationship between material mechanics indicators and protection performance were discussed. This article aims to provide technical and theoretical references for the design, preparation, application, and testing of protective materials for personnel explosion and impact injuries.
  • loading
  • [1]
    WANG J M. The features of explosive fragments induced injury and management [M]//FU X B, LIU L M. Advanced Trauma and Surgery. Singapore: Springer, 2017: 79–103. DOI: 10.1007/978-981-10-2425-2_6.
    [2]
    TSUKADA H, NGUYEN T T N, BREEZE J, et al. The risk of fragment penetrating injury to the heart [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 141: 105776. DOI: 10.1016/j.jmbbm.2023.105776.
    [3]
    DHARANI KUMAR S, SAMVEL R, ARAVINDH M, et al. Ballistic studies on synthetic fibre reinforced polymer composites and it’s applications –A brief review [J]. Materials Today: Proceedings, 2023. DOI: 10.1016/j.matpr.2023.03.679.
    [4]
    NEEDHAM C E, YOUNG L R, CHAMPION H R. Blast physics and biophysics [M]//CALLAWAY D W, BURSTEIN J L. Operational and Medical Management of Explosive and Blast Incidents. Cham: Springer, 2020: 19–33. DOI: 10.1007/978-3-030-40655-4_2.
    [5]
    杨策, 蒋建新, 杜娟, 等. 天津港“8·12”特大爆炸事件对爆炸冲击伤诊治的警示 [J]. 中华诊断学电子杂志, 2016, 4(1): 30–32. DOI: 10.3877/cma.j.issn.2095-655X.2016.01.009.

    YANG C, JIANG J X, DU J, et al. Vigilance and enlightenment from diagnosis and therapy of blast injury in the “8·12” giant explosion in Tianjin harbor [J]. Chinese Journal of Diagnostics (Electronic Edition), 2016, 4(1): 30–32. DOI: 10.3877/cma.j.issn.2095-655X.2016.01.009.
    [6]
    杨策, 蒋建新, 杜娟, 等. 2000年至2015年国内174起爆炸事故冲击伤诊治分析 [J]. 中华诊断学电子杂志, 2016, 4(1): 36–40. DOI: 10.3877/cma.j.issn.2095-655X.2016.01.011.

    YANG C, JIANG J X, DU J, et al. Analysis of the current situation of diagnosis and therapy in Chinese severe explosion accidents over the past 15 years [J]. Chinese Journal of Diagnostics (Electronic Edition), 2016, 4(1): 36–40. DOI: 10.3877/cma.j.issn.2095-655X.2016.01.011.
    [7]
    王正国. 原发肺冲击伤 [J]. 中华肺部疾病杂志(电子版), 2010, 3(4): 231–233. DOI: 10.3877/cma.j.issn.1674-6902.2010.04.001.

    WANG Z G. Primary blast lung injury [J]. Chinese Journal of Lung Diseases (Electronic Edition), 2010, 3(4): 231–233. DOI: 10.3877/cma.j.issn.1674-6902.2010.04.001.
    [8]
    李向荣, 马翊闻, 李帅, 等. 爆炸冲击波峰值区域频率分布特性研究 [J]. 北京理工大学学报, 2019, 39(2): 125–130. DOI: 10.15918/j.tbit1001-0645.2019.02.003.

    LI X R, MA Y W, LI S, et al. Research on frequency distribution of peak area of blast shock wave [J]. Transactions of Beijing institute of Technology, 2019, 39(2): 125–130. DOI: 10.15918/j.tbit1001-0645.2019.02.003.
    [9]
    BYKOVA N G, ZABELINSKII I E, IBRAGIMOVA L B, et al. Radiation characteristics of air in the ultraviolet and vacuum ultraviolet regions of the spectrum behind the front of strong shock waves [J]. Russian Journal of Physical Chemistry B, 2018, 12(1): 108–114. DOI: 10.1134/S1990793118010165.
    [10]
    ZHUO Z, LIU Z L. Mechanical mechanisms and simulation of blast wave protection [M]//WANG Z G, JIANG J X. Explosive Blast Injuries: Principles and Practices. Singapore: Springer, 2023: 89–97. DOI: 10.1007/978-981-19-2856-7_5.
    [11]
    KHRISTOFOROV B D. Effect of properties of the source on the action of explosions in air and water [J]. Combustion, Explosion and Shock Waves, 2004, 40(6): 714–719. DOI: 10.1023/B:CESW.0000048277.31127.06.
    [12]
    FRIEDLANDER F G. Propagation of a pulse in an inhomogeneous medium [M]. New York: New York University, 1955.
    [13]
    WANG X, DU J, ZHUANG Z, et al. Incidence, casualties and risk characteristics of civilian explosion blast injury in China: 2000—2017 data from the state Administration of Work Safety [J]. Military Medical Research, 2020, 7(1): 29. DOI: 10.1186/s40779-020-00257-5.
    [14]
    KOBAYASHI S, HENMI H. Dispersion of shock wave transmitted into non-uniform materials [C]//Proceedings of ASME 2017 Fluids Engineering Division Summer Meeting. Waikoloa: ASME, 2017. DOI: 10.1115/FEDSM2017-69501.
    [15]
    BANDAK F A, LING G, BANDAK A, et al. Injury biomechanics, neuropathology, and simplified physics of explosive blast and impact mild traumatic brain injury [J]. Handbook of Clinical Neurology, 2015, 127: 89–104. DOI: 10.1016/B978-0-444-52892-6.00006-4.
    [16]
    BEN-DOR G, IGRA O, ELPERIN T. Handbook of shock waves, three volume set [M]. New York: Academic, 2000.
    [17]
    SCOTT T. Primary blast lung injury [M]//BULL A M J, CLASPER J, MAHONEY P F. Blast Injury Science and Engineering: A Guide for Clinicians and Researchers. 2nd ed. Cham: Springer, 2023: 193–199. DOI: 10.1007/978-3-031-10355-1_18.
    [18]
    REICHENBACH T. Hearing damage through blast [M]//BULL A M J, CLASPER J, MAHONEY P F. Blast Injury Science and Engineering: A Guide for Clinicians and Researchers. 2nd ed. Cham: Springer, 2023: 209–216. DOI: 10.1007/978-3-031-10355-1_20.
    [19]
    MORLEY M G, NGUYEN J K, HEIER J S, et al. Blast eye injuries: a review for first responders [J]. Disaster Medicine and Public Health Preparedness, 2010, 4(2): 154–160. DOI: 10.1001/dmp.v4n2.hra10003.
    [20]
    OU Y, CLIFTON B A, LI J H, et al. Traumatic brain injury induced by exposure to blast overpressure via ear canal [J]. Neural Regeneration Research, 2022, 17(1): 115–121. DOI: 10.4103/1673-5374.314311.
    [21]
    ZHONG Q J. Heart blast injury [M]//WANG Z G, JIANG J X. Explosive Blast Injuries: Principles and Practices. Singapore: Springer, 2023: 349–355. DOI: 10.1007/978-981-19-2856-7_23.
    [22]
    TURÉGANO-FUENTES F, PÉREZ-DIAZ D, SANZ-SÁNCHEZ M, et al. Abdominal blast injuries: Different patterns, severity, management, and prognosis according to the main mechanism of injury [J]. European Journal of Trauma and Emergency Surgery, 2014, 40(4): 451–460. DOI: 10.1007/s00068-014-0397-4.
    [23]
    CHAVKO M, WATANABE T, ADEEB S, et al. Relationship between orientation to a blast and pressure wave propagation inside the rat brain [J]. Journal of Neuroscience Methods, 2011, 195(1): 61–66. DOI: 10.1016/j.jneumeth.2010.11.019.
    [24]
    LOGAN N J, ARORA H, HIGGINS C A. Evaluating primary blast effects in vitro [J]. Journal of Visualized Experiments, 2017(127): 55618. DOI: 10.3791/55618.
    [25]
    RUBIO J E, UNNIKRISHNAN G, SAJJA V S S S, et al. Investigation of the direct and indirect mechanisms of primary blast insult to the brain [J]. Scientific Reports, 2021, 11(1): 16040. DOI: 10.1038/s41598-021-95003-9.
    [26]
    SUN Y L, QIAN X M, SHU C M, et al. Effects of explosion shock waves on lung injuries in rabbits [J]. Shock and Vibration, 2021, 2021: 6676244. DOI: 10.1155/2021/6676244.
    [27]
    王正国. 爆炸伤概述 [J]. 野战外科通讯, 2004, 29(4): 1–4.
    [28]
    王正国, 蒋建新. 爆炸冲击伤原理与实践 [M]. 北京: 人民卫生出版社, 2020.

    WANG Z G, JIANG J X. Explosive blast injury principles and practices [M]. Beijing: People's Medical Publishing House, 2020.
    [29]
    王鸿, 高俊宏, 张文娟, 等. 肺爆震伤的分子机制研究进展 [J]. 中华创伤杂志, 2020, 36(8): 749–754. DOI: 10.3760/cma.j.issn.1001-8050.2020.08.014.

    WANG H, GAO J H, ZHANG W J, et al. Research progress in molecular mechanism of blast lung injury [J]. Chinese Journal of Trauma, 2020, 36(8): 749–754. DOI: 10.3760/cma.j.issn.1001-8050.2020.08.014.
    [30]
    BARNETT-VANES A, SHARROCK A, EFTAXIOPOULOU T, et al. CD43Lo classical monocytes participate in the cellular immune response to isolated primary blast lung injury [J]. Journal of Trauma and Acute Care Surgery, 2016, 81(3): 500–511. DOI: 10.1097/TA.0000000000001116.
    [31]
    ELSAYED N M, ARMSTRONG K L, WILLIAM M T, et al. Antioxidant loading reduces oxidative stress induced by high-energy impulse noise (blast) exposure [J]. Toxicology, 2000, 155(1/2/3): 91–99. DOI: 10.1016/s0300-483x(00)00281-x.
    [32]
    WANG H, ZHANG W J, LIU J R, et al. NF-κB and FosB mediate inflammation and oxidative stress in the blast lung injury of rats exposed to shock waves [J]. Acta Biochimica et Biophysica Sinica, 2021, 53(3): 283–293. DOI: 10.1093/abbs/gmaa179.
    [33]
    SEITZ D H, PERL M, MANGOLD S, et al. Pulmonary contusion induces alveolar type 2 epithelial cell apoptosis: role of alveolar macrophages and neutrophils [J]. Shock, 2008, 30(5): 537–544. DOI: 10.1097/SHK.0b013e31816a394b.
    [34]
    NAKAGAWA A, OHTANI K, ARMONDA R, et al. Primary blast-induced traumatic brain injury: lessons from lithotripsy [J]. Shock Waves, 2017, 27(6): 863–878. DOI: 10.1007/s00193-017-0753-5.
    [35]
    Nakagawa A, MANLEY G T, GEAN A D, et al. Mechanisms of primary blast-induced traumatic brain injury: Insights from shock-wave research [J]. Journal of Neurotrauma, 2011, 28(6): 1101–1119. DOI: 10.1089/neu.2010.1442.
    [36]
    SIMARD J M, PAMPORI A, KELEDJIAN K, et al. Exposure of the thorax to a sublethal blast wave causes a hydrodynamic pulse that leads to perivenular inflammation in the brain [J]. Journal of Neurotrauma, 2014, 31(14): 1292–1304. DOI: 10.1089/neu.2013.3016.
    [37]
    DE LANEROLLE N C, HAMID H, KULAS J, et al. Concussive brain injury from explosive blast [J]. Annals of Clinical and Translational Neurology, 2014, 1(9): 692–702. DOI: 10.1002/acn3.98.
    [38]
    DANG B Q, CHEN W L, HE W C, et al. Rehabilitation treatment and progress of traumatic brain injury dysfunction [J]. Neural Plasticity, 2017, 2017: 1582182. DOI: 10.1155/2017/1582182.
    [39]
    徐召溪, 徐国政. 爆炸冲击波致轻型颅脑损伤患者血脑屏障损伤机制及其与迟发性神经功能障碍的关系 [J]. 解放军医学杂志, 2016, 41(5): 425–429. DOI: 10.11855/j.issn.0577-7402.2016.05.15.

    XU Z X, XU G Z. Mechanism of blood-brain barrier impairment after mild traumatic brain injury caused by blast shock waves and its relationship with delayed nerve dysfunction [J]. Medical Journal of Chinese People’s Liberation Army, 2016, 41(5): 425–429. DOI: 10.11855/j.issn.0577-7402.2016.05.15.
    [40]
    康越, 马天, 黄献聪, 等. 颅脑爆炸伤数值模拟研究进展: 建模、力学机制及防护 [J]. 爆炸与冲击, 2023, 43(6): 061101. DOI: 10.11883/bzycj-2022-0521.

    KANG Y, MA T, HUANG X C, et al. Advances in numerical simulation of blast-induced traumatic brain injury: modeling, mechanical mechanism and protection [J]. Explosion and Shock Waves, 2023, 43(6): 061101. DOI: 10.11883/bzycj-2022-0521.
    [41]
    CHAMPION H R, HOLCOMB J B, YOUNG L A. Injuries from explosions: physics, biophysics, pathology, and required research focus [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2009, 66(5): 1468–1477. DOI: 10.1097/TA.0b013e3181a27e7f.
    [42]
    PRAT N J, DABAN J L, VOIGLIO E J, et al. Wound ballistics and blast injuries [J]. Journal of Visceral Surgery, 2017, 154 Suppl 1: S9–S12. DOI: 10.1016/j.jviscsurg.2017.07.005.
    [43]
    VAN DER WOERD J D, WAGNER M, PIETZSCH A, et al. Design methods of blast resistant façades, windows, and doors in Germany: a review [J]. Glass Structures & Engineering, 2022, 7(4): 693–710. DOI: 10.1007/s40940-022-00213-w.
    [44]
    孔霖, 苏健军, 李芝绒, 等. 几种不同爆炸冲击波作用的能量谱分析 [J]. 火炸药学报, 2010, 33(6): 76–79. DOI: 10.3969/j.issn.1007-7812.2010.06.018.

    KONG L, SU J J, LI Z R, et al. Energy spectrum analysis of several kinds of explosive blast [J]. Chinese Journal of Explosives & Propellants, 2010, 33(6): 76–79. DOI: 10.3969/j.issn.1007-7812.2010.06.018.
    [45]
    PHILLIPS Y Y, MUNDIE T G, YELVERTON J T, et al. Cloth ballistic vest alters response to blast [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1988, 28(1): S149–S152. DOI: 10.1097/00005373-198801001-00030.
    [46]
    SINGH K, RAJ R, RAJAGOPAL A K, et al. Shock wave attenuation using sandwiched structures made up of polymer foams and shear thickening fluid [J]. Journal of Mechanical Science and Technology, 2023, 37(3): 1311–1316. DOI: 10.1007/s12206-023-0217-z.
    [47]
    JIA S Y, WANG C, XU W L, et al. Experimental investigation on weak shock wave mitigation characteristics of flexible polyurethane foam and polyurea [J]. Defence Technology, 2024, 31: 179–191. DOI: 10.1016/j.dt.2023.06.013.
    [48]
    孙建华, 李艳霞, 魏春荣, 等. 泡沫铁镍金属抑制瓦斯爆炸冲击波的实验研究 [J]. 功能材料, 2013, 44(10): 1390–1394. DOI: 10.3969/j.issn.1001-9731.2013.10.005.

    SUN J H, Li Y X, WEI C R, et al. Experimental study on the porous foam iron-nickel metal inhibition of explosion wave [J]. Journal of Functional Materials, 2013, 44(10): 1390–1394. DOI: 10.3969/j.issn.1001-9731.2013.10.005.
    [49]
    HU Z Q, SHAO J L, JIA S Y, et al. Propagation properties of shock waves in polyurethane foam based on atomistic simulations [J]. Defence Technology, 2024, 31: 117–129. DOI: 10.1016/j.dt.2023.01.020.
    [50]
    GAO Y Y, LALEVÉE J, SIMON-MASSERON A. An overview on 3D printing of structured porous materials and their applications [J]. Advanced Materials Technologies, 2023, 8(17): 2300377. DOI: 10.1002/admt.202300377.
    [51]
    BRANCH B, IONITA A, PATTERSON B M, et al. A comparison of shockwave dynamics in stochastic and periodic porous polymer architectures [J]. Polymer, 2019, 160: 325–337. DOI: 10.1016/j.polymer.2018.10.074.
    [52]
    KADER M A, HAZELL P J, BROWN A D, et al. Novel design of closed-cell foam structures for property enhancement [J]. Additive Manufacturing, 2020, 31: 100976. DOI: 10.1016/j.addma.2019.100976.
    [53]
    FARACI D, DRIEMEIER L, COMI C. Bending-dominated auxetic materials for wearable protective devices against impact [J]. Journal of Dynamic Behavior of Materials, 2021, 7(3): 425–435. DOI: 10.1007/s40870-020-00284-2.
    [54]
    WANG M Z, WU H Z, YANG L, et al. Structure design of arc-shaped auxetic metamaterials with tunable Poisson’s ratio [J]. Mechanics of Advanced Materials and Structures, 2023, 30(7): 1426–1436. DOI: 10.1080/15376494.2022.2033890.
    [55]
    TANCOGNE-DEJEAN T, KARATHANASOPOULOS N, MOHR D. Stiffness and strength of hexachiral honeycomb-like metamaterials [J]. Journal of Applied Mechanics, 2019, 86(11): 111010. DOI: 10.1115/1.4044494.
    [56]
    GAO Y, WEI X Y, HAN X K, et al. Novel 3D auxetic lattice structures developed based on the rotating rigid mechanism [J]. International Journal of Solids and Structures, 2021, 233: 111232. DOI: 10.1016/j.ijsolstr.2021.111232.
    [57]
    PLEWA J, PŁOŃSKA M, LIS P. Investigation of modified auxetic structures from rigid rotating squares [J]. Materials, 2022, 15(8): 2848. DOI: 10.3390/ma15082848.
    [58]
    BOHARA R P, LINFORTH S, GHAZLAN A, et al. Performance of an auxetic honeycomb-core sandwich panel under close-in and far-field detonations of high explosive [J]. Composite Structures, 2022, 280: 114907. DOI: 10.1016/j.compstruct.2021.114907.
    [59]
    FÍLA T, ZLÁMAL P, JIROUŠEK O, et al. Impact testing of polymer-filled auxetics using split Hopkinson pressure bar [J]. Advanced Engineering Materials, 2017, 19(10): 1700076. DOI: 10.1002/adem.201700076.
    [60]
    IMBALZANO G, LINFORTH S, NGO T D, et al. Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs [J]. Composite Structures, 2018, 183: 242–261. DOI: 10.1016/j.compstruct.2017.03.018.
    [61]
    JIN X C, WANG Z H, NING J G, et al. Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading [J]. Composites Part B: Engineering, 2016, 106: 206–217. DOI: 10.1016/j.compositesb.2016.09.037.
    [62]
    YANG S, QI C, WANG D, et al. A comparative study of ballistic resistance of sandwich panels with aluminum foam and auxetic honeycomb cores [J]. Advances in Mechanical Engineering, 2013, 2013: 589216. DOI: 10.1155/2013/589216.
    [63]
    ZHANG J J, LU G X, YOU Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: a review [J]. Composites Part B: Engineering, 2020, 201: 108340. DOI: 10.1016/j.compositesb.2020.108340.
    [64]
    MAGNUS D, SORY D R, LEE J, et al. Study of soft material blast mitigation effects using a shock tube [J]. AIP Conference Proceedings, 2020, 2272(1): 040009. DOI: 10.1063/12.0001017.
    [65]
    SUN J Y, ZHAO X H, ILLEPERUMA W R K, et al. Highly stretchable and tough hydrogels [J]. Nature, 2012, 489(7414): 133–136. DOI: 10.1038/nature11409.
    [66]
    NI J H, LIN S T, QIN Z, et al. Strong fatigue-resistant nanofibrous hydrogels inspired by lobster underbelly [J]. Matter, 2021, 4(6): 1919–1934. DOI: 10.1016/j.matt.2021.03.023.
    [67]
    LIU J, LIN S T, LIU X Y, et al. Fatigue-resistant adhesion of hydrogels [J]. Nature Communications, 2020, 11(1): 1071. DOI: 10.1038/s41467-020-14871-3.
    [68]
    FAN H L, WANG J H, GONG J P. Barnacle cement proteins-inspired tough hydrogels with robust, long-lasting, and repeatable underwater adhesion [J]. Advanced Functional Materials, 2021, 31(11): 2009334. DOI: 10.1002/adfm.202009334.
    [69]
    MATSUDA T, NAKAJIMA T, GONG J P. Fabrication of tough and stretchable hybrid double-network elastomers using ionic dissociation of polyelectrolyte in nonaqueous media [J]. Chemistry of Materials, 2019, 31(10): 3766–3776. DOI: 10.1021/acs.chemmater.9b00871.
    [70]
    MATSUDA T, KAWAKAMI R, NAMBA R, et al. Mechanoresponsive self-growing hydrogels inspired by muscle training [J]. Science, 2019, 363(6426): 504–508. DOI: 10.1126/science.aau9533.
    [71]
    LI T, ZHANG C, XIE Z N, et al. A multi-scale investigation on effects of hydrogen bonding on micro-structure and macro-properties in a polyurea [J]. Polymer, 2018, 145: 261–271. DOI: 10.1016/j.polymer.2018.05.003.
    [72]
    ZHANG L, WANG Y T, WANG X, et al. Investigation on the influence mechanism of polyurea material property on the blast resistance of polyurea-steel composite plate [J]. Structures, 2022, 44: 1910–1927. DOI: 10.1016/j.istruc.2022.09.001.
    [73]
    CHU D Y, WANG Y G, YANG S L, et al. Analysis and design for the comprehensive ballistic and blast resistance of polyurea-coated steel plate [J]. Defence Technology, 2023, 19: 35–51. DOI: 10.1016/j.dt.2021.11.010.
    [74]
    ZHANG P, WANG Z J, ZHAO P D, et al. Experimental investigation on ballistic resistance of polyurea coated steel plates subjected to fragment impact [J]. Thin-Walled Structures, 2019, 144: 106342. DOI: 10.1016/j.tws.2019.106342.
    [75]
    冯加和, 董奇, 张刘成, 等. 聚脲弹性体在爆炸防护中的研究进展 [J]. 含能材料, 2020, 28(4): 277–290. DOI: 10.11943/CJEM2019135.

    FENG J H, DONG Q, ZHANG L C, et al. Review on using polyurea elastomer for enhanced blast-mitigation [J]. Chinese Journal of Energetic Materials, 2020, 28(4): 277–290. DOI: 10.11943/CJEM2019135.
    [76]
    LEE J, JING B B, PORATH L E, et al. Shock wave energy dissipation in catalyst-free poly(dimethylsiloxane) vitrimers [J]. Macromolecules, 2020, 53(12): 4741–4747. DOI: 10.1021/acs.macromol.0c00784.
    [77]
    郭国吉, 陈彩英, 王向明, 等. 聚脲弹性体防护材料的研究进展 [J]. 中国表面工程, 2021, 34(6): 1–20. DOI: 10.11933/j.issn.1007-9289.20210602001.

    GUO G J, CHEN C Y, WANG X M, et al. Research progress of polyurea elastomer protective materials [J]. China Surface Engineering, 2021, 34(6): 1–20. DOI: 10.11933/j.issn.1007-9289.20210602001.
    [78]
    HARIS A, LEE H P, TAN V B C. An experimental study on shock wave mitigation capability of polyurea and shear thickening fluid based suspension pads [J]. Defence Technology, 2018, 14(1): 12–18. DOI: 10.1016/j.dt.2017.08.004.
    [79]
    IQBAL N, TRIPATHI M, PARTHASARATHY S, et al. Polyurea spray coatings: tailoring material properties through chemical crosslinking [J]. Progress in Organic Coatings, 2018, 123: 201–208. DOI: 10.1016/j.porgcoat.2018.07.005.
    [80]
    LIANG M Z, ZHOU M, LI X Y, et al. Synergistic effect of combined blast loads on UHMWPE fiber mesh reinforced polyurea composites [J]. International Journal of Impact Engineering, 2024, 183: 104804. DOI: 10.1016/j.ijimpeng.2023.104804.
    [81]
    ZHANG L, JI C, WANG X, et al. Strengthening and converse strengthening effects of polyurea layer on polyurea–steel composite structure subjected to combined actions of blast and fragments [J]. Thin-Walled Structures, 2022, 178: 109527. DOI: 10.1016/j.tws.2022.109527.
    [82]
    DE TOMASI TESSARI B, VARGAS N, DIAS R R, et al. Influence of the addition of graphene nanoplatelets on the ballistic properties of HDPE/aramid multi-laminar composites [J]. Polymer-Plastics Technology and Materials, 2022, 61(4): 363–373. DOI: 10.1080/25740881.2021.1988966.
    [83]
    PANDYA K S, NAIK N K. Analytical and experimental studies on ballistic impact behavior of carbon nanotube dispersed resin [J]. International Journal of Impact Engineering, 2015, 76: 49–59. DOI: 10.1016/j.ijimpeng.2014.09.003.
    [84]
    MYLVAGANAM K, ZHANG L C. Energy absorption capacity of carbon nanotubes under ballistic impact [J]. Applied Physics Letters, 2006, 89(12): 123127. DOI: 10.1063/1.2356325.
    [85]
    LAURENZI S, PASTORE R, GIANNINI G, et al. Experimental study of impact resistance in multi-walled carbon nanotube reinforced epoxy [J]. Composite Structures, 2013, 99: 62–68. DOI: 10.1016/j.compstruct.2012.12.002.
    [86]
    MA D, WANG C, XU W L, et al. Investigate of shock wave mitigation performance of nano-carbon fillers modified epoxy composites [J]. Polymer Composites, 2022, 43(10): 7463–7472. DOI: 10.1002/pc.26833.
    [87]
    AMOS S E, YALCIN B. Hollow glass microspheres for plastics, elastomers, and adhesives compounds. Amsterdam: William Andrew, 2015: 273–280. DOI: 10.1016/b978-1-4557-7443-2.18001-6.
    [88]
    WANG T M, CHEN S B, WANG Q H, et al. Damping analysis of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and micro hollow glass bead [J]. Materials & Design, 2010, 31(8): 3810–3815. DOI: 10.1016/j.matdes.2010.03.029.
    [89]
    DRDLOVÁ M, FRANK M. Mechanical properties of glass microsphere/epoxy foams modified by carbon nanotubes and nanosilica [J]. Journal of Scientific & Industrial Research, 2016, 75: 365–370.
    [90]
    SHIRA S, BULLER C. Mixing and dispersion of hollow glass microsphere products [M]//AMOS S E, YALCIN B. Hollow Glass Microspheres for Plastics, Elastomers, and Adhesives Compounds. Amsterdam: William Andrew, 2015: 241–271. DOI: 10.1016/B978-1-4557-7443-2.00011-6.
    [91]
    THORAT M, SAHU S, MENEZES V, et al. Shock loading of closed cell aluminum foams in the presence of an air cavity [J]. Applied Sciences, 2020, 10(12): 4128. DOI: 10.3390/app10124128.
    [92]
    XIAO F, CHEN Y, HUA H X. Comparative study of the shock resistance of rubber protective coatings subjected to underwater explosion [J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(2): 021402. DOI: 10.1115/1.4026670.
    [93]
    GORDON S, ABIDI N. Cotton fibres: characteristics, uses and performance [M]. New York: Nova Science Publishers, 2017.
    [94]
    GORE P M, KANDASUBRAMANIAN B. Functionalized aramid fibers and composites for protective applications: a review [J]. Industrial & Engineering Chemistry Research, 2018, 57(49): 16537–16563. DOI: 10.1021/acs.iecr.8b04903.
    [95]
    叶希洋, 苏健军, 姬建荣. 冲击波测试效应靶法综述 [J]. 兵器装备工程学报, 2019, 40(12): 55–61,124. DOI: 10.11809/bqzbgcxb2019.12.012.

    YE X Y, SU J J, JI J R. Review of effect target method for shock wave measurement [J]. Journal of Ordnance Equipment Engineering, 2019, 40(12): 55–61,124. DOI: 10.11809/bqzbgcxb2019.12.012.
    [96]
    熊祖钊, 白春华. 燃料空气炸药武器威力评价指标研究 [J]. 火炸药学报, 2002, 25(2): 19–22. DOI: 10.3969/j.issn.1007-7812.2002.02.008.

    XIONG Z Z, BAI C H. Study of fuel-air explosive weapon power evaluation indexes [J]. Chinese Journal of Explosives & Propellants, 2002, 25(2): 19–22. DOI: 10.3969/j.issn.1007-7812.2002.02.008.
    [97]
    王峰, 杨志焕, 朱佩芳, 等. 高原冲击伤伤情特点的实验研究 [J]. 创伤外科杂志, 2008, 10(6): 549–551. DOI: 10.3969/j.issn.1009-4237.2008.06.026.

    WANG F, YANG Z H, ZHU P F, et al. Experimental study on characteristics of blast injury at high altitude [J]. Journal of Traumatic Surgery, 2008, 10(6): 549–551. DOI: 10.3969/j.issn.1009-4237.2008.06.026.
    [98]
    杨立云, 许鹏, 高祥涛, 等. 数字激光高速摄影系统及其在爆炸光测力学实验中的应用 [J]. 科技导报, 2014, 32(32): 17–21. DOI: 10.3981/j.issn.1000-7857.2014.32.002.

    YANG L Y, XU P, GAO X T, et al. Digital laser high-speed photography system and its application in photomechanical tests with blast loading [J]. Science & Technology Review, 2014, 32(32): 17–21. DOI: 10.3981/j.issn.1000-7857.2014.32.002.
    [99]
    BOUTILLIER J, CARDONA V, MAGNAN P, et al. A new anthropomorphic mannequin for efficacy evaluation of thoracic protective equipment against blast threats [J]. Frontiers in Bioengineering and Biotechnology, 2022, 9: 786881. DOI: 10.3389/fbioe.2021.786881.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article Metrics

    Article views (74) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return