Turn off MathJax
Article Contents
JIAO Junjie, SHAN Feng, WANG Hancheng, QI Yanjie, PAN Xuchao, FANG Zhong, CHENG Yubo, HE Xiaolan, CI Shengjie, HE Yong. Determination of JWL equation of state based on the detonation product from underwater explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0203
Citation: JIAO Junjie, SHAN Feng, WANG Hancheng, QI Yanjie, PAN Xuchao, FANG Zhong, CHENG Yubo, HE Xiaolan, CI Shengjie, HE Yong. Determination of JWL equation of state based on the detonation product from underwater explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0203

Determination of JWL equation of state based on the detonation product from underwater explosion

doi: 10.11883/bzycj-2024-0203
  • Received Date: 2024-06-27
  • Rev Recd Date: 2024-10-18
  • Available Online: 2024-11-05
  • The equation of state for the detonation products of explosives is one of the foundations in explosion physics. JWL equation of state has been widely applied to study the properties of various explosives. In order to obtain the equation of state of the detonation products, an underwater explosion method was used to study JWL equation of state for the detonation of RDX. It considered the explosion bubble expansion process based on the conservation of energy including Es0 (initial shock wave energy), Ept (potential energy of water), Ec (kinetic energy of water) and Er (energy loss by bubble expansion), which are related to the underwater explosion bubble radius (R-t) and shock wave front (Rs-t) measured in the underwater explosion experiments as functions of time. Based on the experimental results and using the same method to process the experimental data in cylinder experiment, the time functions of explosion bubble expansion radius and variation of shock wave front position were fitted and the parameters of the JWL equation of state for RDX detonation products were obtained. In order to analyze the accuracy of the parameters of the JWL equation of state obtained by the underwater explosion method, the time history of the underwater explosions bubble pulsating pressure wave was calculated using the bubble dynamics equation. It shows that the calculation results agree well with the bubble expansion radius and bubble pulsation period determined using the underwater explosion experiments in a pool. The calculated bubble radius obtained by the proposed measurement method has a smaller deviation from that obtained by the cylinder experimental value, especially in the low-pressure stage compare with the JWL state parameters obtained from cylinder method. This method provides a testing approach for the equation of state of detonation products with low cost, reduced size limitations and a wide pressure range.
  • loading
  • [1]
    陈朗, 冯长根, 黄毅民. 含铝炸药圆筒试验及爆轰产物JWL状态方程研究 [J]. 火炸药学报, 2001, 24(3): 13–15. DOI: 10.3969/j.issn.1007-7812.2001.03.005.

    CHEN L, FENG C G, HUANG Y M. The cylinder test and JWL equation of state detontion product of aluminized explosives [J]. Chinese Journal of Explosives & Propellants, 2001, 24(3): 13–15. DOI: 10.3969/j.issn.1007-7812.2001.03.005.
    [2]
    裴红波, 钟斌, 李星瀚, 等. RDX基含铝炸药圆筒试验及状态方程研究 [J]. 火炸药学报, 2019, 42(4): 403–409. DOI: 10.14077/j.issn.1007-7812.2019.04.015.

    PEI H B, ZHONG B, LI X H, et al. Study on the cylinder tests and equation of state in RDX based aluminized explosives [J]. Chinese Journal of Explosives & Propellants, 2019, 42(4): 403–409. DOI: 10.14077/j.issn.1007-7812.2019.04.015.
    [3]
    沈飞, 王辉, 袁建飞, 等. RDX基含铝炸药不同尺寸的圆筒试验及数值模拟 [J]. 含能材料, 2013, 21(6): 777–780. DOI: 10.3969/j.issn.1006-9941.2013.06.017.

    SHEN F, WANG H, YUAN J F, et al. Different diameter cylinder tests and numerical simulation of RDX based aluminized explosive [J]. Chinese Journal of Energetic Materials, 2013, 21(6): 777–780. DOI: 10.3969/j.issn.1006-9941.2013.06.017.
    [4]
    韩勇, 黄辉, 黄毅民, 等. 含铝炸药圆筒试验与数值模拟 [J]. 火炸药学报, 2009, 32(4): 14–17. DOI: 10.3969/j.issn.1007-7812.2009.04.004.

    HAN Y, HUANG H, HUANG Y M, et al. Cylinder test of aluminized explosives and its numerical simulation [J]. Chinese Journal of Explosives & Propellants, 2009, 32(4): 14–17. DOI: 10.3969/j.issn.1007-7812.2009.04.004.
    [5]
    杨晨琛, 李晓杰, 闫鸿浩, 等. 爆轰产物状态方程的水下爆炸反演理论研究 [J]. 爆炸与冲击, 2019, 39(9): 092201. DOI: 10.11883/bzycj-2018-0210.

    YANG C C, LI X J, YAN H H, et al. An inverse method for the equation of state of detonation products from underwater explosion tests [J]. Explosion and Shock Waves, 2019, 39(9): 092201. DOI: 10.11883/bzycj-2018-0210.
    [6]
    HOLTON W C. The detonation pressures in explosives as measured by transmitted shocks in water: NAVORD Report 3968 [R]. White Oak: U. S. Naval Ordnance Laboratory, 1954.
    [7]
    COOK M A, PACK D H, MCEWAN W S. Promotion of shock initiation of detonation by metallic surfaces [J]. Transactions of the Faraday Society, 1960, 56: 1028–1038. DOI: 10.1039/tf9605601028.
    [8]
    RIGDON J K. Explosive performance: SANL-712-004 [R]. Amarillo: Mason and Hanger-Silas Mason Company Incorporated, 1969. DOI: 10.2172/532483.
    [9]
    杨凯, 孔军利, 沈飞, 等. 水下滑移爆轰试验确定JWL状态方程参数 [J]. 火炸药学报, 2013, 36(3): 62–64. DOI: 10.3969/j.issn.1007-7812.2013.03.015.

    YANG K, KONG J L, SHEN F, et al. Determining the parameters of JWL EOS by underwater sliding detonation test [J]. Chinese Journal of Explosives & Propellants, 2013, 36(3): 62–64. DOI: 10.3969/j.issn.1007-7812.2013.03.015.
    [10]
    沈飞, 王辉, 袁建飞, 等. 含铝炸药水下滑移爆轰实验研究 [J]. 实验力学, 2014, 29(5): 641–646. DOI: 10.7520/1001-4888-13-202.

    SHEN F, WANG H, YUAN J F, et al. Experimental study of underwater sliding detonation of aluminized explosives [J]. Journal of Experimental Mechanics, 2014, 29(5): 641–646. DOI: 10.7520/1001-4888-13-202.
    [11]
    魏贤凤, 龙新平, 韩勇. PBX-01炸药水中爆轰产物状态方程研究 [J]. 爆炸与冲击, 2015, 35(4): 599–602. DOI: 10.11883/1001-1455(2015)04-0599-04.

    WEI X F, LONG X P, HAN Y. Studies on the state equation of the underwater detonation products for PBX-01 explosive [J]. Explosion and Shock Waves, 2015, 35(4): 599–602. DOI: 10.11883/1001-1455(2015)04-0599-04.
    [12]
    李科斌, 董新龙, 李晓杰, 等. 水下爆炸实验法在工业炸药JWL状态方程测定中的应用研究 [J]. 兵工学报, 2020, 41(3): 488–494. DOI: 10.3969/j.issn.1000-1093.2020.03.009.

    LI K B, DONG X L, LI X J, et al. Research on parameters determination of JWL EOS for commercial explosives based on underwater explosion test [J]. Acta Armamentarii, 2020, 41(3): 488–494. DOI: 10.3969/j.issn.1000-1093.2020.03.009.
    [13]
    林谋金, 马宏昊, 沈兆武, 等. 铝纤维对黑索今水下爆炸性能的影响 [J]. 爆炸与冲击, 2014, 34(3): 379–384. DOI: 10.11883/1001-1455(2014)03-0379-06.

    LIN M J, MA H H, SHEN Z W, et al. Effect of aluminum fiber on underwater detonation performance of RDX [J]. Explosion and Shock Waves, 2014, 34(3): 379–384. DOI: 10.11883/1001-1455(2014)03-0379-06.
    [14]
    胡宏伟, 王建灵, 徐洪涛, 等. RDX基含铝炸药水中爆炸近场冲击波特性 [J]. 火炸药学报, 2009, 32(2): 1–5. DOI: 10.3969/j.issn.1007-7812.2009.02.001.

    HU H W, WANG J L, XU H T, et al. Underwater shock wave characteristics of RDX-based aluminized explosives in near-field range [J]. Chinese Journal of Explosives & Propellants, 2009, 32(2): 1–5. DOI: 10.3969/j.issn.1007-7812.2009.02.001.
    [15]
    ZHANG J X, WANG S S, JIA X Y, et al. An improved Kirkwood-Bethe model for calculating near-field shockwave propagation of underwater explosions [J]. AIP Advances, 2021, 11(3): 035123. DOI: 10.1063/5.0040224.
    [16]
    沈飞, 王辉, 袁建飞, 等. 铝含量对RDX基含铝炸药驱动能力的影响 [J]. 火炸药学报, 2013, 36(3): 50–53. DOI: 10.3969/j.issn.1007-7812.2013.03.012.

    SHEN F, WANG H, YUAN J F, et al. Influence of Al content on the driving ability of RDX-based aluminized explosives [J]. Chinese Journal of Explosives & Propellants, 2013, 36(3): 50–53. DOI: 10.3969/j.issn.1007-7812.2013.03.012.
    [17]
    DOBRATZ B M, CRAWFORD P C. LLNL explosives handbook-properties of chemical explosives and explosive simulants: UCRL--52997-Chg. 2 [R]. Livermore: Lawrence Livermore National Laboratory, 1981.
    [18]
    SHAN F, HE Y, JIAO J J, et al. Experimental and theoretical analysis of detonation products state on bubble dynamics and energy distribution in underwater explosion [J]. Journal of Applied Physics, 2021, 130(17): 174701. DOI: 10.1063/5.0058644.
    [19]
    WANG H C, HE Y, SHAN F, et al. Roles of underwater explosion bubble accelerating expansion cut-off state in bubble dynamics and energy output [J]. Journal of Applied Physics, 2022, 132(19): 194704. DOI: 10.1063/5.0110446.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (77) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return