Turn off MathJax
Article Contents
XIE Beijing, CHEN Mingjin, CHEN Siyu, LIU Zhiyao. Experimental study on mechanical properties of ice shock under different states[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0207
Citation: XIE Beijing, CHEN Mingjin, CHEN Siyu, LIU Zhiyao. Experimental study on mechanical properties of ice shock under different states[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0207

Experimental study on mechanical properties of ice shock under different states

doi: 10.11883/bzycj-2024-0207
  • Received Date: 2024-06-27
  • Rev Recd Date: 2024-09-18
  • Available Online: 2024-09-23
  • To investigate the dynamic mechanical characterization of non-pure and non-intact ice materials under impact loads, a modified split Hopkinson pressure bar (SHPB) was used. Rapid loading, rod end cooling and waveform shaping techniques were used to ensure the stability of the ice material and achieve dynamic stress balance during loading. The impact mechanical properties of complete ice (pure water, containing 2.5%, 3.5%, 4.5% salt, containing 2.0%, 4.5%, 8.5% coconut) and spliced ice (splicing interface inclination 30°, 60°) at freezing temperature of −10 ℃ were studied. The strain rate ranges from 150~250 s−1. The failure process was recorded by using the high-speed camera triggered simultaneously with the pressure rod. The correlation between the stress and strain of the sample, along with the failure process, was determined by analyzing the time history curve of sample. The failure mode of the spliced ice sample was analyzed by combining the Mohr-Coulomb strength criterion. The results show that the pure water ice exhibits the highest compressive strength, followed by the ice with coconut shreds, and both of them show a positive strain rate effect. However, the compressive strength of the ice with salt addition decreases significantly due to its loose structure and the strain rate effect is not obvious. The dynamic compressive strength of ice samples added with coconut fiber increases firstly and then decreases with the increase of coconut fiber content. Ice samples with high coconut fiber content are prone to "double peak" phenomenon due to the binding effect of coconut fiber on broken ice with small particle size. The splicing plane affects the crack growth, resulting in lower compressive strength than the intact ice sample, and affects the failure mode as well. The ice with small interface inclination is mainly damaged by interface slip, while the ice with large interface inclination is mainly damaged by whole ice, which is similar to the intact ice. The research results provide theoretical basis and method reference for the dynamic mechanical properties of non-pure and non-intact ice materials under impact loads.
  • loading
  • [1]
    HOHL R, SCHIESSER H H, ALLER D. Hailfall: the relationship between radar-derived hail kinetic energy and hail damage to buildings [J]. Atmospheric Research, 2002, 63(3/4): 177–207. DOI: 10.1016/S0169-8095(02)00059-5.
    [2]
    HOHL R, SCHIESSER H H, KNEPPER I. The use of weather radars to estimate hail damage to automobiles: an exploratory study in Switzerland [J]. Atmospheric Research, 2002, 61(3): 215–238. DOI: 10.1016/S0169-8095(01)00134-X.
    [3]
    FERRO C G, CELLINI A, MAGGIORE P. Structural damage assessment of an airfoil anti-icing system under hailstorm conditions [J]. Aerospace, 2024, 11(7): 520. DOI: 10.3390/aerospace11070520.
    [4]
    刘俊杰, 刘昆, 从曙光, 等. 方槽型纵骨船舶抗冰结构冰撞动响应实验研究 [J]. 爆炸与冲击, 2021, 41(6): 065101. DOI: 10.11883/bzycj-2020-0168.

    LIU J J, LIU K, CONG S G, et al. Experimental study on dynamic response of an anti-ice hull structure with square groove longitudinals under ice impact [J]. Explosion and Shock Waves, 2021, 41(6): 065101. DOI: 10.11883/bzycj-2020-0168.
    [5]
    WU X Q, PRAKASH V. Dynamic compressive behavior of ice at cryogenic temperatures [J]. Cold Regions Science and Technology, 2015, 118: 1–13. DOI: 10.1016/j.coldregions.2015.06.004.
    [6]
    KERMANI M, FARZANEH M, GAGNON R. Compressive strength of atmospheric ice [J]. Cold Regions Science and Technology, 2007, 49(3): 195–205. DOI: 10.1016/j.coldregions.2007.05.003.
    [7]
    KIM H, KEUNE J N. Compressive strength of ice at impact strain rates [J]. Journal of Materials Science, 2007, 42(8): 2802–2806. DOI: 10.1007/s10853-006-1376-x.
    [8]
    SHAZLY M, PRAKASH V, LERCH B A. High strain-rate behavior of ice under uniaxial compression [J]. International Journal of Solids and Structures, 2009, 46(6): 1499–1515. DOI: 10.1016/j.ijsolstr.2008.11.020.
    [9]
    ZHANG Y H, WANG Q, HAN D F, et al. Dynamic splitting tensile behaviours of distilled-water and river-water ice using a modified SHPB setup [J]. International Journal of Impact Engineering, 2020, 145: 103686. DOI: 10.1016/j.ijimpeng.2020.103686.
    [10]
    SONG Z H, CHEN R, GUO D L, et al. Experimental investigation of dynamic shear mechanical properties and failure criterion of ice at high strain rates [J]. International Journal of Impact Engineering, 2022, 166: 104254. DOI: 10.1016/J.IJIMPENG.2022.104254.
    [11]
    单仁亮, 白瑶, 黄鹏程, 等. 三向受力条件下淡水冰破坏准则研究 [J]. 力学学报, 2017, 49(2): 467–477. DOI: 10.6052/0459-1879-16-364.

    SHAN R L, BAI Y, HUANG P C, et al. Experimental research on failure criteria of freshwater ice under triaxial compressive stress [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 467–477. DOI: 10.6052/0459-1879-16-364.
    [12]
    解北京, 栾铮, 刘天乐, 等. 静水压下原生组合煤岩动力学破坏特征 [J]. 煤炭学报, 2023, 48(5): 2153–2167. DOI: 10.13225/j.cnki.jccs.2023.0193.

    XIE B J, LUAN Z, LIU T L, et al. Dynamic failure characteristics of primary coal-rock combination under hydrostatic pressure [J]. Journal of China Coal Society, 2023, 48(5): 2153–2167. DOI: 10.13225/j.cnki.jccs.2023.0193.
    [13]
    聂飞晴. 棉纤维增强冰复合材料的冲击动力学特性研究 [D]. 太原: 太原理工大学, 2023: 15–16. DOI: 10.27352/d.cnki.gylgu.2023.000574.

    NIE F Q. Study on impact dynamics of cotton fiber reinforced ice composite [D]. Taiyuan: Taiyuan University of Technology, 2023: 15–16. DOI: 10.27352/d.cnki.gylgu.2023.000574.
    [14]
    赵恺旭. 纤维增强冰基复合材料抗冲击性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2023: 12–13. DOI: 10.27060/d.cnki.ghbcu.2023.001199.

    ZHAO K X. Study on impact resistance of fiber reinforced ice matrix composites [D]. Harbin: Harbin Engineering University, 2023: 12–13. DOI: 10.27060/d.cnki.ghbcu.2023.001199.
    [15]
    梁志强. 冰的制备及力学特性研究 [D]. 沈阳: 沈阳理工大学, 2020: 22–23. DOI: 10.27323/d.cnki.gsgyc.2020.000096.

    LIANG Z Q. Study on preparation and mechanical properties of ice [D]. Shenyang: Shenyang Ligong University, 2020: 22–23. DOI: 10.27323/d.cnki.gsgyc.2020.000096.
    [16]
    ISAKOV M, LANGE J, KILCHERT S, et al. In-situ damage evaluation of pure ice under high rate compressive loading [J]. Materials, 2019, 12(8): 1236. DOI: 10.3390/ma12081236.
    [17]
    李尚昆, 冯晓伟, 谢若泽, 等. 高应变率下纯水冰和杂质冰的动态力学行为 [J]. 爆炸与冲击, 2019, 39(9): 093103. DOI: 10.11883/bzycj-2018-0270.

    LI S K, FENG X W, XIE R Z, et al. Dynamic compression property of distill-water ice and impurity-water ice at high strain rates [J]. Explosion and Shock Waves, 2019, 39(9): 093103. DOI: 10.11883/bzycj-2018-0270.
    [18]
    汪洋, 李玉龙, 刘传雄. 利用SHPB测定高应变率下冰的动态力学行为 [J]. 爆炸与冲击, 2011, 31(2): 215–219. DOI: 10.11883/1001-1455(2011)02-0215-05.

    WANG Y, LI Y L, LIU C X. Dynamic mechanical behaviors of ice at high strain rates [J]. Explosion and Shock Waves, 2011, 31(2): 215–219. DOI: 10.11883/1001-1455(2011)02-0215-05.
    [19]
    解北京, 陈铭进, 陈思羽, 等. 冰试样动态冲击破坏力学特性实验研究 [J]. 防灾减灾工程学报, 2023, 43(6): 1284–1290. DOI: 10.13409/j.cnki.jdpme.20230207003.

    XIE B J, CHEN M J, CHEN S Y, et al. Experimental study on dynamic impact failure mechanical properties of ice samples [J]. Journal of Disaster Prevention and Mitigation Engineering, 2023, 43(6): 1284–1290. DOI: 10.13409/j.cnki.jdpme.20230207003.
    [20]
    NAKAO Y, YAMADA H, OGASAWARA N, et al. Impact compression test of ice by combining SHPB method and high-speed camera observation [J]. Experimental Mechanics, 2022, 62(7): 1227–1240. DOI: 10.1007/s11340-022-00874-2.
    [21]
    解北京, 栾铮, 李晓旭, 等. 三维动静加载下煤的本构模型及卸荷破坏特征 [J]. 哈尔滨工业大学学报, 2024, 56(4): 61–72. DOI: 10.11918/202301054.

    XIE B J, LUAN Z, LI X X, et al. Constitutive model and unloading failure characteristics of coal under 3D coupled static and dynamic loads [J]. Journal of Harbin Institute of Technology, 2024, 56(4): 61–72. DOI: 10.11918/202301054.
    [22]
    DAVIES E D H, HUNTER S C. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar [J]. Journal of the Mechanics and Physics of Solids, 1963, 11(3): 155–179. DOI: 10.1016/0022-5096(63)90050-4.
    [23]
    陈晓东. 海冰与海水间热力作用过程及海冰单轴压缩强度特性的试验研究 [D]. 大连: 大连理工大学, 2019: 76–79. DOI: 10.26991/d.cnki.gdllu.2019.004313.

    CHEN X D. Experimental study on sea ice - water thermodynamic process and characteristics of sea ice uniaxial compressive strength [D]. Dalian: Dalian University of Technology, 2019: 76–79. DOI: 10.26991/d.cnki.gdllu.2019.004313.
    [24]
    COLE D M. The microstructure of ice and its influence on mechanical properties [J]. Engineering Fracture Mechanics, 2001, 68(17/18): 1797–1822. DOI: 10.1016/S0013-7944(01)00031-5.
    [25]
    姚韦靖, 刘宇, 庞建勇, 等. 不同界面倾角岩石-混凝土组合体蠕变特性研究 [J]. 采矿与岩层控制工程学报, 2024, 6(4): 141–153. DOI: 10.13532/j.jmsce.cn10-1638/td.20240715.001.

    YAO W J, LIU Y, PANG J Y, et al. Creep behavior of combined rock-concrete specimens with different interface inclination angles [J]. Journal of Mining and Strata Control Engineering, 2024, 6(4): 141–153. DOI: 10.13532/j.jmsce.cn10-1638/td.20240715.001.
    [26]
    赵坚, 李海波. 莫尔-库仑和霍克-布朗强度准则用于评估脆性岩石动态强度的适用性 [J]. 岩石力学与工程学报, 2003, 22(2): 171–176. DOI: 10.3321/j.issn:1000-6915.2003.02.001.

    ZHAO J, LI H B. Estimating the dynamic strength of rock using Mohr-Coulomb and Hoek-Brown criteria [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 171–176. DOI: 10.3321/j.issn:1000-6915.2003.02.001.
    [27]
    WU F, LIU Y, GAO R B, et al. Study on the influence mechanism of interfacial inclination angle on the mechanical behavior of coal and concrete specimens [J]. Construction and Building Materials, 2024, 443: 137787. DOI: 10.1016/J.CONBUILDMAT.2024.137787.
    [28]
    薛珂, 王江涛, 张毓颖, 等. 三轴加载条件下层理煤体的力学特性和破坏机制研究 [J]. 中国安全生产科学技术, 2023, 19(12): 71–78. DOI: 10.11731/j.issn.1673-193x.2023.12.009.

    XUE K, WANG J T, ZHANG Y Y, et al. Study on mechanical properties and failure mechanism of layered coal under triaxial loading conditions [J]. Journal of Safety Science and Technology, 2023, 19(12): 71–78. DOI: 10.11731/j.issn.1673-193x.2023.12.009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article Metrics

    Article views (107) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return