| Citation: | WANG Kehui, MENG Long, LI Ming, ZOU Huihui, WU Haijun, DAI Xianghui, DUAN Jian, ZHOU Gang. Experimental study on high-speed penetration of reinforced concrete targets by structural projectiles made of two types of materials[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0213 |
| [1] |
杨建超, 左新建, 何翔, 等. 弹体高速侵彻混凝土质量侵蚀实验研究 [J]. 实验力学, 2012, 27(1): 122–127.
YANG J C, ZUO X J, HE X, et al. Experimental study of projectile mass loss in high velocity penetration of concrete target [J]. Journal of Experimental Mechanics, 2012, 27(1): 122–127.
|
| [2] |
DONG H, LIU Z H, WU H J, et al. Study on penetration characteristics of high-speed elliptical cross-sectional projectiles into concrete [J]. International Journal of Impact Engineering, 2019, 132: 103311. DOI: 10.1016/j.ijimpeng.2019.05.025.
|
| [3] |
ZHANG X Y, WU H J, ZHANG S, et al. Projectile penetration of reinforced concrete considering the effect of steel reinforcement: Experimental study and theoretical analysis [J]. International Journal of Impact Engineering, 2020, 144: 103653. DOI: 10.1016/j.ijimpeng.2020.103653.
|
| [4] |
WANG J, WU H J, DONG H, et al. Flow field analysis of long rod hypervelocity penetration into semi-infinite concrete target [J]. Mechanics of Materials, 2023, 179: 104564. DOI: 10.1016/j.mechmat.2023.104564.
|
| [5] |
GUO L, HE Y, ZHANG X F, et al. Thermal-mechanical analysis on the mass loss of high-speed projectiles penetrating concrete targets [J]. European Journal of Mechanics - A/Solids, 2017, 65: 159–177. DOI: 10.1016/j.euromechsol.2017.03.011.
|
| [6] |
GUO L, HE Y, ZHANG X F, et al. Study mass loss at microscopic scale for a projectile penetration into concrete [J]. International Journal of Impact Engineering, 2014, 72: 17–25. DOI: 10.1016/j.ijimpeng.2014.05.001.
|
| [7] |
周忠彬, 马田, 赵永刚, 等. 不同材料弹体超声速侵彻钢筋混凝土靶的结构破坏对比实验 [J]. 高压物理学报, 2020, 34(2): 025101. DOI: 10.11858/gywlxb.20190841.
ZHOU Z B, MA T, ZHAO Y G, et al. Comparative experiment on structural damage of supersonic projectiles with different metal materials penetrating into reinforced concrete targets [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 025101. DOI: 10.11858/gywlxb.20190841.
|
| [8] |
DENG Y J, CHEN X W, SONG W J. Dynamic cavity-expansion penetration model of elastic-cracked-crushed response for reinforced-concrete targets [J]. International Journal of Impact Engineering, 2021, 157: 103981. DOI: 10.1016/j.ijimpeng.2021.103981.
|
| [9] |
LU Y Y, ZHANG Q M, XUE Y J, et al. Hypervelocity penetration of concrete targets with long-rod steel projectiles: experimental and theoretical analysis [J]. International Journal of Impact Engineering, 2021, 148: 103742. DOI: 10.1016/j.ijimpeng.2020.103742.
|
| [10] |
KAMAL I M, ELTEHEWY E M. Projectile penetration of reinforced concrete blocks: Test and analysis [J]. Theoretical and Applied Fracture Mechanics, 2012, 60(1): 31–37. DOI: 10.1016/j.tafmec.2012.06.005.
|
| [11] |
MU Z C, ZHANG W, WANG W, et al. Revising the penetration behavior of concrete-like and metal-like materials against the rigid projectile impact [J]. Mechanics of Materials, 2020, 142: 103274. DOI: 10.1016/j.mechmat.2019.103274.
|
| [12] |
FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. DOI: 10.1016/S0734-743X(02)00108-2.
|
| [13] |
FREW D J, FORRESTAL M J, CARGILE J D. The effect of concrete target diameter on projectile deceleration and penetration depth [J]. International Journal of Impact Engineering, 2006, 32(10): 1584–1594. DOI: 10.1016/j.ijimpeng.2005.01.012.
|
| [14] |
武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究 [J]. 兵工学报, 2012, 33(1): 48–55. DOI: 10.3969/j.issn.1000-1093.2012.01.009.
WU H J, HUANG F L, WANG Y N, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete [J]. Acta Armamentarii, 2012, 33(1): 48–55. DOI: 10.3969/j.issn.1000-1093.2012.01.009.
|
| [15] |
何翔, 徐翔云, 孙桂娟, 等. 弹体高速侵彻混凝土的效应实验 [J]. 爆炸与冲击, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.
HE X, XU X Y, SUN G J, et al. Experimental investigation on projectiles’ high-velocity penetration into concrete targets [J]. Explosion and Shock Waves, 2010, 30(1): 1–6. DOI: 10.11883/1001-1455(2010)01-0001-06.
|
| [16] |
戴湘晖, 周刚, 沈子楷, 等. 高速弹体对钢筋混凝土靶的侵彻/贯穿效应实验研究 [J]. 高压物理学报, 2019, 33(5): 055101. DOI: 10.11858/gywlxb.20180672.
DAI X H, ZHOU G, SHEN Z K, et al. Experimental study of high-speed projectile penetration/perforation into reinforced concrete targets [J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055101. DOI: 10.11858/gywlxb.20180672.
|
| [17] |
FENG J, SONG M L, SUN W W, et al. Thick plain concrete targets subjected to high speed penetration of 30CrMnSiNi2A steel projectiles: Tests and analyses [J]. International Journal of Impact Engineering, 2018, 122: 305–317. DOI: 10.1016/j.ijimpeng.2018.09.005.
|
| [18] |
郭磊, 何勇, 潘绪超, 等. 高速侵彻弹体表层侵蚀效应理论计算 [J]. 振动与冲击, 2018, 37(15): 51–58. DOI: 10.13465/j.cnki.jvs.2018.15.007.
GUO L, HE Y, PAN X C, et al. Theoretical calculation for surface abrasion effect of projectiles penetrating in to concrete targets with a high speed [J]. Journal of Vibration and Shock, 2018, 37(15): 51–58. DOI: 10.13465/j.cnki.jvs.2018.15.007.
|
| [19] |
梁斌, 陈小伟, 姬永强, 等. 先进钻地弹概念弹的次口径高速深侵彻实验研究 [J]. 爆炸与冲击, 2008, 28(1): 1–9. DOI: 10.11883/1001-1455(2008)01-0001-09.
LIANG B, CHEN X W, JI Y Q, et al. Experimental study on deep penetration of reduced-scale advanced earth penetrating weapon [J]. Explosion and Shock Waves, 2008, 28(1): 1–9. DOI: 10.11883/1001-1455(2008)01-0001-09.
|
| [20] |
ZHAO J, CHEN X W, JIN F N, et al. Depth of penetration of high-speed penetrator with including the effect of mass abrasion [J]. International Journal of Impact Engineering, 2010, 37(9): 971–979. DOI: 10.1016/j.ijimpeng.2010.03.008.
|
| [21] |
王可慧, 周刚, 李明, 等. 弹体高速侵彻钢筋混凝土靶试验研究 [J]. 爆炸与冲击, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.
WANG K H, ZHOU G, LI M, et al. Experimental research on the mechanism of a high-velocity projectile penetrating into a reinforced concrete target [J]. Explosion and Shock Waves, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.
|
| [22] |
任辉启. 精确制导武器侵彻效应与工程防护 [M]. 北京: 科学出版社, 2016.
REN Q H. The penetration effect of precision guided weapons and engineering protection [M]. Beijing: Science Press, 2016.
|
| [23] |
武海军, 张爽, 黄风雷. 钢筋混凝土靶的侵彻与贯穿研究进展 [J]. 兵工学报, 2018, 39(1): 182–208. DOI: 10.3969/j.issn.1000-1093.2018.01.020.
WU H J, ZHANG S, HUANG F L. Research progress in penetration/perforation into reinforced concrete targets [J]. Acta Armamentarii, 2018, 39(1): 182–208. DOI: 10.3969/j.issn.1000-1093.2018.01.020.
|
| [24] |
GWALTNEY R C. Missile generation and protection in light-water-cooled power reactor plants: ORNL-NSIC-22 [R]. Oak Ridge: Oak Ridge National Laboratory, 1968.
|
| [25] |
邓佳杰, 张先锋, 刘闯, 等. 头部非对称刻槽弹体侵彻混凝土目标性能研究 [J]. 兵工学报, 2018, 39(7): 1249–1258. DOI: 10.3969/j.issn.1000-1093.2018.07.001.
DENG J J, ZHANG X F, LIU C, et al. Research on penetration of asymmetrically grooved nose projectile into concrete target [J]. Acta Armamentarii, 2018, 39(7): 1249–1258. DOI: 10.3969/j.issn.1000-1093.2018.07.001.
|
| [26] |
王可慧, 段建, 李明, 等. 降低终点弹道偏转效应弹体结构设计 [J]. 弹箭与制导学报, 2015, 35(3): 50–52,98. DOI: 10.15892/j.cnki.djzdxb.2015.03.014.
WANG K H, DUAN J, LI M, et al. Penetrator design to reduce trajectory deflexion effect [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(3): 50–52,98. DOI: 10.15892/j.cnki.djzdxb.2015.03.014.
|