Turn off MathJax
Article Contents
Calculation method for quasi-static pressure of annular composite implosion of active materials and explosives[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0218
Citation: Calculation method for quasi-static pressure of annular composite implosion of active materials and explosives[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0218

Calculation method for quasi-static pressure of annular composite implosion of active materials and explosives

doi: 10.11883/bzycj-2024-0218
  • Received Date: 2024-07-02
    Available Online: 2024-09-19
  • The post ignition effect of explosives will release more energy by reacting with air, resulting in an increase in quasi-static pressure. In order to predict the quasi-static pressure of internal explosion in a closed environment composed of aluminum containing active materials and explosive rings, this paper proposes an optimization method for the quasi-static pressure calculation model applicable to the internal explosion of aluminum containing composite charges, based on summarizing the existing quasi-static pressure calculation models of hydrogen, oxygen, and nitrogen explosives that consider the post ignition effect. Then, active materials and explosives composite charges and aluminum containing explosives internal explosion tests are carried out, and the experimental data are compared and analyzed with the quasi-static pressure results calculated by the established optimization model. At the same time, the internal explosion results of the two types of explosives are compared, and the calculation model is extended to general aluminum containing explosives and the accuracy is verified. The research results indicate that the established quasi-static pressure correction model for post combustion of composite explosives is in good agreement with experimental and literature data, with an average error of 10.2% and a maximum error of 16.0%; The average error of the calculation results for general aluminum containing explosives is 12.1%, with a maximum error
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (89) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return