Citation: | ZHU Jianlei, HAN Lei, FANG Zhanxiang, XU Yuxin. Calculation method for quasi-static pressure of annular composite implosion of active materials and explosives[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0218 |
[1] |
KUHL A L, REICHENBACH H. Combustion effects in confined explosions [J]. Proceedings of the Combustion Institute, 2009, 32(2): 2291–2298. DOI: 10.1016/j.proci.2008.05.001.
|
[2] |
KUHL A L, FORBES J, CHANDLER J, et al. Confined combustion of TNT explosion products in air: UCRL-K-131748 [R]. Livermore: Lawrence Livermore National Laboratory, 1998.
|
[3] |
FELDGUN V R, KARINSKI Y S, EDRI I, et al. Prediction of the quasi-static pressure in confined and partially confined explosions and its application to blast response simulation of flexible structures [J]. International Journal of Impact Engineering, 2016, 90: 46–60. DOI: 10.1016/j.ijimpeng.2015.12.001.
|
[4] |
EDRI I, FELDGUN V R, KARINSKI Y S, et al. On blast pressure analysis due to a partially confined explosion: III. Afterburning effect [J]. International Journal of Protective Structures, 2012, 3(3): 311–331. DOI: 10.1260/2041-4196.3.3.311.
|
[5] |
李旭东. 内爆准静态压力载荷对舱壁结构的毁伤效应研究 [D]. 太原: 中北大学, 2020. DOI: 10.27470/d.cnki.ghbgc.2020.001050.
LI X D. Study on the damage effect of internal explosive quasi-static pressure loads to bulkhead structures [D]. Taiyuan: North University of China, 2020. DOI: 10.27470/d.cnki.ghbgc.2020.001050.
|
[6] |
王等旺, 张德志, 李焰, 等. 爆炸容器内准静态气压实验研究 [J]. 兵工学报, 2012, 33(12): 1493–1497. DOI: 10.3969/j.issn.1000-1093.2012.12.014.
WANG D W, ZHANG D Z, LI Y, et al. Experiment investigation on quasi-static pressure in explosion containment vessels [J]. Acta Armamentarii, 2012, 33(12): 1493–1497. DOI: 10.3969/j.issn.1000-1093.2012.12.014.
|
[7] |
王鑫, 张连生, 张明明, 等. 密闭空间TNT内爆炸准静态压力研究 [J]. 兵器装备工程学报, 2020, 41(5): 188–192. DOI: 10.11809/bqzbgcxb2020.05.036.
WANG X, ZHANG L S, ZHANG M M, et al. Study on quasi-static pressure of TNT internal explosion in confined spaces [J]. Journal of Ordnance Equipment Engineering, 2020, 41(5): 188–192. DOI: 10.11809/bqzbgcxb2020.05.036.
|
[8] |
张玉磊, 苏健军, 李芝绒, 等. TNT内爆炸准静态压力特性 [J]. 爆炸与冲击, 2018, 38(6): 1429–1434. DOI: 10.11883/bzycj-2017-0170.
ZHANG Y L, SU J J, LI Z R, et al. Quasi-static pressure characteristic of TNT’s internal explosion [J]. Explosion and Shock Waves, 2018, 38(6): 1429–1434. DOI: 10.11883/bzycj-2017-0170.
|
[9] |
钟巍, 田宙. 等压假设下考虑化学反应动力学影响的约束爆炸准静态压力的计算 [J]. 爆炸与冲击, 2013, 33(4): 375–380. DOI: 10.3969/j.issn.1001-1455.2013.04.007.
ZHONG W, TIAN Z. Calculation of quasi-static pressures for confined explosions considering chemical reactions under isobaric assumption [J]. Explosion and Shock Waves, 2013, 33(4): 375–380. DOI: 10.3969/j.issn.1001-1455.2013.04.007.
|
[10] |
钟巍, 田宙. 考虑产物化学反应影响的约束爆炸准静态压力数值计算方法 [J]. 爆炸与冲击, 2013, 33(S1): 78–83.
ZHONG W, TIAN Z. Numerical calculation of quasi-static pressures of confined explosions considering chemical reactions kinetic of detonation products [J]. Explosion and Shock Waves, 2013, 33(S1): 78–83.
|
[11] |
钟巍, 田宙, 赵阳. 考虑约束爆炸后产物发生化学反应的约束空间内准静态温度计算 [J]. 爆炸与冲击, 2015, 35(6): 777–784. DOI: 10.11883/1001-1455(2015)06-0777-08.
ZHONG W, TIAN Z, ZHAO Y. Calculation of the quasi-static temperature of confined explosions in consideration of the effect of the chemical reactions with detonation products [J]. Explosion and Shock Waves, 2015, 35(6): 777–784. DOI: 10.11883/1001-1455(2015)06-0777-08.
|
[12] |
徐维铮, 吴卫国. 密闭空间内爆炸准静态压力理论计算研究 [J]. 中国舰船研究, 2019, 14(5): 124–130. DOI: 10.19693/j.issn.1673-3185.01368.
XU W Z, WU W G. Study on theoretical calculation of quasi-static pressure for explosion in confined space [J]. Chinese Journal of Ship Research, 2019, 14(5): 124–130. DOI: 10.19693/j.issn.1673-3185.01368.
|
[13] |
李世伟, 王正宏, 吴成成, 等. 铝粉含量对RDX基含铝炸药爆热性能的影响 [J]. 爆破器材, 2022, 51(4): 29–32. DOI: 10.3969/j.issn.1001-8352.2022.04.005.
LI S W, WANG Z H, WU C C, et al. Effect of aluminum content on detonation heat of RDX-based aluminized explosives [J]. Explosive Materials, 2022, 51(4): 29–32. DOI: 10.3969/j.issn.1001-8352.2022.04.005.
|
[14] |
李媛媛, 王晓峰, 牛余雷, 等. 环境氧含量对含铝炸药爆热的影响 [J]. 火炸药学报, 2014, 37(2): 49–52,56. DOI: 10.14077/j.issn.1007-7812.2014.02.009.
LI Y Y, WANG X F, NIU Y L, et al. Effects of environment oxygen content on heat of detonation of aluminized explosive [J]. Chinese Journal of Explosives & Propellants, 2014, 37(2): 49–52,56. DOI: 10.14077/j.issn.1007-7812.2014.02.009.
|
[15] |
白玉. 含铝炸药爆炸场温度测试及数值模拟 [D]. 太原: 中北大学, 2022. DOI: 10.27470/d.cnki.ghbgc.2022.000344.
BAI Y. Temperature measurement and numerical simulation of explosive field containing aluminum [D]. Taiyuan: North University of China, 2022. DOI: 10.27470/d.cnki.ghbgc.2022.000344.
|
[16] |
张玉磊, 李芝绒, 蒋海燕, 等. 温压炸药内爆炸压力特性及威力试验研究 [J]. 兵工学报, 2018, 39(7): 1333–1338. DOI: 10.3969/j.issn.1000-1093.2018.07.011.
ZHANG Y L, LI Z R, JIANG H Y, et al. Experimental study of the characteristics of internal explosion pressure and power of thermobaric explosive [J]. Acta Armamentarii, 2018, 39(7): 1333–1338. DOI: 10.3969/j.issn.1000-1093.2018.07.011.
|
[17] |
蒋欣利, 张国凯, 何勇, 等. 密闭建筑温压炸药内爆炸后燃效应 [J]. 兵工学报, 2024, 45(8): 2520–2530. DOI: 10.12382/bgxb.2023.0555.
JIANG X L, ZHANG G K, HE Y, et al. Afterburning effect of thermobaric explosives in confined space [J]. Acta Armamentarii, 2024, 45(8): 2520–2530. DOI: 10.12382/bgxb.2023.0555.
|
[18] |
李媛媛, 徐洪涛. 密闭环境下含铝炸药爆炸场温度与压力特征 [J]. 爆破器材, 2014, 43(2): 1–4. DOI: 10.3969/j.issn.1001-8352.2014.02.001.
LI Y Y, XU H T. Characteristics of blasting temperature and pressure of aluminized explosive in confined conditions [J]. Explosive Materials, 2014, 43(2): 1–4. DOI: 10.3969/j.issn.1001-8352.2014.02.001.
|
[19] |
段晓瑜. 含铝炸药空气中爆炸冲击波特性研究 [D]. 北京: 北京理工大学, 2017. DOI: 10.26948/d.cnki.gbjlu.2017.000047.
DUAN X Y. Study on the properties of shock wave from aluminized explosives blast in air [D]. Beijing: Beijing Institute of Technology, 2017. DOI: 10.26948/d.cnki.gbjlu.2017.000047.
|
[20] |
卢广照, 姜春兰, 毛亮, 等. 薄钢板在CL-20基含铝炸药内爆载荷作用下的变形响应和工程预测 [J]. 兵工学报, 2020, 41(8): 1509–1518. DOI: 10.3969/j.issn.1000-1093.2020.08.005.
LU G Z, JIANG C L, MAO L, et al. Deformation response and its engineering prediction of steel plate subjected to internal blast loading from CL-20-based aluminized explosive charges [J]. Acta Armamentarii, 2020, 41(8): 1509–1518. DOI: 10.3969/j.issn.1000-1093.2020.08.005.
|
[21] |
阳世清, 徐松林, 张彤. PTFE/Al反应材料制备工艺及性能 [J]. 国防科技大学学报, 2008, 30(6): 39–42, 62. DOI: 10.3969/j.issn.1001-2486.2008.06.009.
YANG S Q, XU S L, ZHANG T. Preparation and performance of PTFE/Al reactive materials [J]. Journal of National University of Defense Technology, 2008, 30(6): 39–42, 62. DOI: 10.3969/j.issn.1001-2486.2008.06.009.
|
[22] |
刘瑞华, 王亚军, 万奕, 等. 氧化铝/聚四氟乙烯热化学反应特性及影响因素 [J]. 火炸药学报, 2024, 47(1): 35–43. DOI: 10.14077/j.issn.1007-7812.202304023.
LIU R H, WANG Y J, WAN Y, et al. Thermochemical reaction characteristics and influencing factors of alumina/polytetrafluoroethylene composites [J]. Chinese Journal of Explosives & Propellants, 2024, 47(1): 35–43. DOI: 10.14077/j.issn.1007-7812.202304023.
|
[23] |
刘瑞华, 王亚军, 邓正亮, 等. 铝基含氟铝热体系反应机理研究进展 [J]. 火炸药学报, 2023, 46(9): 776–787. DOI: 10.14077/j.issn.1007-7812.202303004.
LIU R H, WANG Y J, DENG Z L, et al. Progress on the reaction mechanism of aluminum-based fluorine-containing thermite systems [J]. Chinese Journal of Explosives and Propellants, 2023, 46(9): 776–787. DOI: 10.14077/j.issn.1007-7812.202303004.
|
[24] |
陈林玉, 张向军, 张鸣一, 等. 氮化铝纳米陶瓷粉末制备方法的研究进展 [J]. 兵器材料科学与工程, 2024, 47(3): 130–137. DOI: 10.14024/j.cnki.1004-244x.20240513.001.
CHEN L Y, ZHANG X J, ZHANG M Y, et al. Research progress on preparation methods of aluminum nitride nano-ceramic powder [J]. Ordnance Materials Science and Engineering, 2024, 47(3): 130–137. DOI: 10.14024/j.cnki.1004-244x.20240513.001.
|
[25] |
岳学森. 舰船舱内爆炸载荷燃烧增强效应及抑制方法研究 [D]. 武汉: 武汉理工大学, 2022. DOI: 10.27381/d.cnki.gwlgu.2022.001554.
YUE X S. Study on afterburning effect and mitigation method of blast load in confined cabin [D]. Wuhan: Wuhan University of Technology, 2022. DOI: 10.27381/d.cnki.gwlgu.2022.001554.
|
[26] |
钟凯, 张朝阳. 纳米铝颗粒在不同炸药环境中氧化燃烧的分子动力学模拟 [J]. 含能材料, 2023, 31(1): 48–60. DOI: 10.11943/CJEM2022231.
ZHONG K, ZHANG C Y. Oxidation and combustion of aluminum nanoparticles in different explosive environments by molecular dynamics simulation [J]. Chinese Journal of Energetic Materials, 2023, 31(1): 48–60. DOI: 10.11943/CJEM2022231.
|