Citation: | LI Xiaocheng, XI Xulong, BAI Chunyu, LIU Xiaochuan, ZHANG Xinyue, HAN Hezhao, XU Fei, FENG Wei, YANG Xianfeng. Research on scaled experimental method of civil aircraft crash performance[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0227 |
[1] |
刘小川, 白春玉, 惠旭龙, 等. 民机机身结构耐撞性研究的进展与挑战 [J]. 固体力学学报, 2020, 41(4): 293–323. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2020.035.
LIU X C, BAI C Y, XI X L, et al. Progress and challenge of research on crashworthiness of civil airplane fuselage structures [J]. Chinese Journal of Solid Mechanics, 2020, 41(4): 293–323. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2020.035.
|
[2] |
牟浩蕾, 谢威威, 解江, 等. 坠撞环境下乘员伤害分析及飞机适坠性评估 [J]. 航空学报, 2024, 45(3): 228786. DOI: 10.7527/S1000-6893.2023.28786.
MOU H L, XIE W W, XIE J, et al. Occupant injury analysis and aircraft crashworthiness evaluation under crash scenarios [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 228786. DOI: 10.7527/S1000-6893.2023.28786.
|
[3] |
张欣玥, 惠旭龙, 刘小川, 等. 典型金属民机机身结构坠撞特性试验 [J]. 航空学报, 2022, 43(6): 526234. DOI: 10.7527/S1000-6893.2022.26234.
ZHANG X Y, XI X L, LIU X C, et al. Experimental study on crash characteristics of typical metal civil aircraft fuselage structure [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526234. DOI: 10.7527/S1000-6893.2022.26234.
|
[4] |
WILLIAMS M S, HAYDUK R J. Vertical drop test of a transport fuselage section located forward of the wing: 19840002543 [R]. Washington: NASA, 1983.
|
[5] |
LITTELL J D. A summary of results from two full-scale fokker F28 fuselage section drop tests: 20180004391 [R]. Washington: NASA, 2018.
|
[6] |
刘小川, 惠旭龙, 张欣玥, 等. 典型民用飞机全机坠撞实验研究 [J]. 航空学报, 2024, 45(5): 529664. DOI: 10.7527/S1000-6893.2023.29664.
LIU X C, XI X L, ZHANG X Y, et al. Full-scale crash experimental study of typical civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529664. DOI: 10.7527/S1000-6893.2023.29664.
|
[7] |
杨磊峰, 常新哲, 徐绯, 等. 受轴向冲击薄壁圆管的几何畸变相似律研究 [J]. 爆炸与冲击, 2022, 42(5): 053205. DOI: 10.11883/bzycj-2021-0452.
YANG L F, CHANG X Z, XU F, et al. Study on the scaling law of geometrically-distorted thin-walled cylindrical shells subjected to axial impact [J]. Explosion and Shock Waves, 2022, 42(5): 053205. DOI: 10.11883/bzycj-2021-0452.
|
[8] |
李肖成, 徐绯, 杨磊峰, 等. 薄板在冲击载荷下线弹性理想塑性响应的相似性研究 [J]. 爆炸与冲击, 2021, 41(11): 113103. DOI: 10.11883/bzycj-2020-0374.
LI X C, XU F, YANG L F, et al. Study on the similarity of elasticity and ideal plasticity response of thin plate under impact loading [J]. Explosion and Shock Waves, 2021, 41(11): 113103. DOI: 10.11883/bzycj-2020-0374.
|
[9] |
王帅, 徐绯, 代震, 等. 结构冲击畸变问题的直接相似方法研究 [J]. 力学学报, 2020, 52(3): 774–786. DOI: 10.6052/0459-1879-19-327.
WANG S, XU F, DAI Z, et al. A direct scaling method for the distortion problems of structural impact [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 774–786. DOI: 10.6052/0459-1879-19-327.
|
[10] |
WANG S, XU F, ZHANG X Y, et al. Material similarity of scaled models [J]. International Journal of Impact Engineering, 2021, 156: 103951. DOI: 10.1016/j.ijimpeng.2021.103951.
|
[11] |
CASABURO A, PETRONE G, FRANCO F, et al. A review of similitude methods for structural engineering [J]. Applied Mechanics Reviews, 2019, 71(3): 030802. DOI: 10.1115/1.4043787.
|
[12] |
秦健, 张振华. 原型和模型不同材料时加筋板冲击动态响应的相似预报方法 [J]. 爆炸与冲击, 2010, 30(5): 511–516. DOI: 10.11883/1001-1455(2010)05-0511-06.
QIN J, ZHANG Z H. A scaling method for predicting dynamic responses of stiffened plates made of materials different from experimental models [J]. Explosion and Shock Waves, 2010, 30(5): 511–516. DOI: 10.11883/1001-1455(2010)05-0511-06.
|
[13] |
王悦鑫, 何欢, 吴添, 等. 基于损失函数的缩比模型冲击响应预报结果修正方法 [J]. 航空学报, 2022, 43(8): 225781. DOI: 10.7527/S1000-6893.2021.25781.
WANG Y X, HE H, WU T, et al. Modified method for impact response prediction of scaled model based on loss function [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 225781. DOI: 10.7527/S1000-6893.2021.25781.
|
[14] |
COUTINHO C P, BAPTISTA A J, RODRIGUES J D. Reduced scale models based on similitude theory: a review up to 2015 [J]. Engineering Structures, 2016, 119: 81–94. DOI: 10.1016/j.engstruct.2016.04.016.
|
[15] |
OSHIRO R E, CALLE M A G, MAZZARIOL L M, et al. Experimental study of collision in scaled naval structures [J]. International Journal of Impact Engineering, 2017, 110: 149–161. DOI: 10.1016/j.ijimpeng.2017.01.024.
|
[16] |
HORTA L G. A historical perspective on dynamics testing at the Langley Research Center [R]. Hampton: Langley Research Center, 2000.
|
[17] |
殷文骏, 程帅, 刘文祥, 等. 远场爆炸冲击波作用下高层建筑上部结构动态响应试验研究 [J]. 兵工学报, 2024, 45(11): 4039–4051. DOI: 10.12382/bgxb.2023.0960.
YIN W J, CHENG S, LIU W X, et al. Experimental study on dynamic response of upper structure of high-rise building under far-field explosion shock wave loading [J]. Acta Armamentarii, 2024, 45(11): 4039–4051. DOI: 10.12382/bgxb.2023.0960.
|
[18] |
CALLE M A G, OSHIRO R E, ALVES M. Ship collision and grounding: scaled experiments and numerical analysis [J]. International Journal of Impact Engineering, 2017, 103: 195–210. DOI: 10.1016/j.ijimpeng.2017.01.021.
|
[19] |
陈暘, 陈立霞, 汪正中. 直升机缩比模型水中横向稳性试验研究 [J]. 直升机技术, 2019(4): 57–59, 72. DOI: 10.3969/j.issn.1673-1220.2019.04.013.
CHEN Y, CHEN L X, WANG Z Z. Experiment research on the helicopter scale model lateral stability in water [J]. Helicopter Technique, 2019(4): 57–59, 72. DOI: 10.3969/j.issn.1673-1220.2019.04.013.
|
[20] |
金鑫, 刘宇, 唐长红, 等. 舰载机缩比落震动载荷预计及试验技术 [J]. 力学与实践, 2021, 43(4): 521–528. DOI: 10.6052/1000-0879-20-472.
JIN X, LIU Y, TANG C H, et al. Prediction and testing technology of vibration load for scaled-model of carrier based aircraft [J]. Mechanics in Engineering, 2021, 43(4): 521–528. DOI: 10.6052/1000-0879-20-472.
|
[1] | ZHOU Xuan, WANG Botong, WU Yiding, LU Wencheng, MA Minghui, YU Yilei, GAO Guangfa. Accuracy analysis of Young’s modulus and stress-strain curve in the elastic stage of materials using Hopkinson bar experimental method[J]. Explosion And Shock Waves, 2024, 44(9): 091443. doi: 10.11883/bzycj-2023-0380 |
[2] | HUANG Chao, ZHANG Pan, ZENG Fan, XU Weizheng, WANG Jie, LIU Na. A method for adjusting and controlling underwater explosion shock wave[J]. Explosion And Shock Waves, 2022, 42(8): 083201. doi: 10.11883/bzycj-2021-0450 |
[3] | LIU Yuan, PI Aiguo, YANG He, FENG Jikui, HUANG Fenglei. Study on similarity law of non-proportionally scaled penetration/perforation test[J]. Explosion And Shock Waves, 2020, 40(3): 033302. doi: 10.11883/bzycj-2019-0086 |
[4] | SHU Qi, DONG Xinlong, YU Xinlu. A dynamic tensile method for M-shaped specimen loaded by Hopkinson pressure bar[J]. Explosion And Shock Waves, 2020, 40(8): 084101. doi: 10.11883/bzycj-2019-0433 |
[5] | REN Jibin, WANG Bin, WANG Zhen, LIU Jun, SUO Tao, LI Yulong. Design and experimental verification of a wing leading edge structure[J]. Explosion And Shock Waves, 2019, 39(2): 025101. doi: 10.11883/bzycj-2017-0407 |
[6] | HU Yang, YIN Shangxian, Bjørn J. ARNTZEN, ZHU Jianfang, LI Xuebing, Ragnhild Dybdal OIE, QIN Hansheng. Experimental study of multi-objective coupling synchronous control in gas/air premixed gas deflagration flow test system[J]. Explosion And Shock Waves, 2019, 39(9): 094201. doi: 10.11883/bzycj-2018-0312 |
[7] | CHEN Pengcheng, CHENG Xin, GONG Lei, LU Guoyun. Impact resistance of H shaped beam with various width-to-thickness ratios[J]. Explosion And Shock Waves, 2018, 38(6): 1378-1385. doi: 10.11883/bzycj-2017-0125 |
[8] | LI Penghui, GUO Weiguo, LIU Kaiye, WANG Jianjun, TAN Xueming. Validity analysis of materials' dynamic tensile SHTB experimental technique at ultrahigh temperature[J]. Explosion And Shock Waves, 2018, 38(2): 426-436. doi: 10.11883/bzycj-2016-0259 |
[9] | XU Xiaohui, QIU Yanyu, WANG Mingyang, SHAO Luzhong. Development of the testing apparatus for modeling large equivalent underground cratering explosions[J]. Explosion And Shock Waves, 2018, 38(6): 1333-1343. doi: 10.11883/bzycj-2017-0144 |
[10] | Liu Wentao, Yao Xiongliang, Li Shuai, Zhang Aman. scaled-down underwater explosion model on a centrifuge apparatus[J]. Explosion And Shock Waves, 2016, 36(6): 789-796. doi: 10.11883/1001-1455(2016)06-0789-08 |
[11] | Liang Hao-zhe, Song Li. A method of spherical indentation experiment based on the split Hopkinson pressure bar system[J]. Explosion And Shock Waves, 2014, 34(6): 673-678. doi: 10.11883/1001-1455(2014)06-0673-06 |
[12] | He-Qian, LI Yuan-Sheng, LI Lei, YUE Zhu-Feng. On dynamic structural response of an airplane landing onto water[J]. Explosion And Shock Waves, 2010, 30(2): 125-130. doi: 10.11883/1001-1455(2010)02-0125-06 |
[13] | LIU Jun, LI Yu-long, XU Fei. Dynamic response analysis of bird-impact aircraft windshields based on PAM-CRASH[J]. Explosion And Shock Waves, 2009, 29(1): 80-84. doi: 10.11883/1001-1455(2009)01-0080-05 |
[14] | CHEN Xiao-wei, ZHANG Fang-ju, YANG Shi-quan, XIE Ruo-ze, GAO Hai-ying, XU Ai-ming, JIN Jian-ming, QU Ming. Mechanics of structural design of EPW(Ⅲ): Investigations on the reduced-scale tests[J]. Explosion And Shock Waves, 2006, 26(2): 105-214. doi: 10.11883/1001-1455(2006)02-0105-10 |
[15] | YAO Xiao-hu, HAN Qiang, ZHANG Xiao-qing, ZHAO Long-mao. Experimental study on arc windshield of fighter subjected to bird impact[J]. Explosion And Shock Waves, 2005, 25(5): 417-422. doi: 10.11883/1001-1455(2005)05-0417-06 |