Citation: | YUAN Kai, WU Qiheng, SUN Tiezhi, YANG Nana. Study on load reduction characteristics of porous foam buffer for high-speed water entry vehicle[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0232 |
[1] |
吕红庆, 许磊, 王振清. 不同头型旋成体入水初期流场特性数值分析 [J]. 兵器装备工程学报, 2022, 43(12): 34–42. DOI: 10.11809/bqzbgcxb2022.12.006.
LYU H Q, XU L, WANG Z Q. Numerical research on flow field characteristics of axisymmetric bodies with different head shapes during initial water entry [J]. Journal of Ordnance Equipment Engineering, 2022, 43(12): 34–42. DOI: 10.11809/bqzbgcxb2022.12.006.
|
[2] |
TANG S Q, ZHANG Y, SUN S L, et al. Experimental investigation on the air-cushion effect during free fall of a trimaran section using an air escape control method [J]. Ocean Engineering, 2022, 254: 111417. DOI: 10.1016/j.oceaneng.2022.111417.
|
[3] |
WU S Y, SHAO Z Y, FENG S S, et al. Water-entry behavior of projectiles under the protection of polyurethane buffer head [J]. Ocean Engineering, 2020, 197: 106890. DOI: 10.1016/j.oceaneng.2019.106890.
|
[4] |
KUBOTA Y, MOCHIZUKI O. Influence of head shape of solid body plunging into water on splash formation [J]. Journal of Visualization, 2011, 14(2): 111–119. DOI: 10.1007/s12650-011-0071-4.
|
[5] |
石汉成, 蒋培, 程锦房. 头部形状对水雷入水载荷及水下弹道影响的数值仿真分析 [J]. 舰船科学技术, 2010, 32(10): 104–107. DOI: 10.3404/j.issn.1672-7649.2010.10.027.
SHI H C, JIANG P, CHENG J F. Research on numerical simulation of mine water-entry impact acceleration and underwater ballistic trajectory under the different mine’s head shape [J]. Ship Science and Technology, 2010, 32(10): 104–107. DOI: 10.3404/j.issn.1672-7649.2010.10.027.
|
[6] |
SHI Y, PAN G, YIM S C, et al. Numerical investigation of hydroelastic water-entry impact dynamics of AUVs [J]. Journal of Fluids and Structures, 2019, 91: 102760. DOI: 10.1016/j.jfluidstructs.2019.102760.
|
[7] |
GUO Z T, ZHANG W, XIAO X K, et al. An investigation into horizontal water entry behaviors of projectiles with different nose shapes [J]. International Journal of Impact Engineering, 2012, 49(2): 43–60. DOI: 10.1016/j.ijimpeng.2012.04.004.
|
[8] |
潘龙, 王焕然, 姚尔人, 等. 头部喷气平头圆柱体人水缓冲机制研究 [J]. 工程热物理学报, 2015, 36(8): 1691–1695.
PAN L, WANG H R, YAO E R, et al. Mechanism research on the water-enter impact of the head-jetting flat cylinder [J]. Journal of Engineering Thermophysics, 2015, 36(8): 1691–1695.
|
[9] |
SUN T Z, WANG S S, BAI P Y, et al. Cavity dynamics of water entry for a head-ventilated cylinder [J]. Physics of Fluids, 2022, 34(7): 073302. DOI: 10.1063/5.0094249.
|
[10] |
王峻, 刘珑翔, 陈瑛. 头部喷气圆柱高速入水空泡与降载特性的数值模拟研究 [J]. 水动力学研究与进展A辑, 2023, 38(2): 195–204. DOI: 10.16076/j.cnki.cjhd.2023.02.005.
WANG J, LIU L X, CHENG Y. Numerical investigation on the high-speed water entry cavity and load reduction of air-jetting cylinder [J]. Chinese Journal of Hydrodynamics, 2023, 38(2): 195–204. DOI: 10.16076/j.cnki.cjhd.2023.02.005.
|
[11] |
赵海瑞, 施瑶, 潘光. 头部喷气航行器高速入水空泡特性数值分析 [J]. 西北工业大学学报, 2021, 39(4): 810–817. DOI: 10.1051/jnwpu/20213940810.
ZHAO H R, SHI Y, PAN G. Numerical analysis of cavitation characteristics for high speed water entry of headjet vehicle [J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 810–817. DOI: 10.1051/jnwpu/20213940810.
|
[12] |
宣建明, 宋志平, 严忠汉. 鱼雷入水缓冲保护头帽解体试验研究 [J]. 鱼雷技术, 1999, 7(2): 41–46.
XUAN J M, SONG Z P, YAN Z H. Experimental study on disintegration of torpedo nose cap during water entry [J]. Torpedo Technology, 1999, 7(2): 41–46.
|
[13] |
HORTON D M. Shock-mitigating nose for underwater vehicles: U. S. Patent 6536365 [P]. 2003.
|
[14] |
AVALLE M, BELINGARDI G, MONTANINI R. Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram [J]. International Journal of Impact Engineering, 2001, 25(5): 455–472. DOI: 10.1016/S0734-743X(00)00060-9.
|
[15] |
曾斐, 潘艺, 胡时胜. 泡沫铝缓冲吸能评估及其特性 [J]. 爆炸与冲击, 2002, 22(4): 358–362. DOI: 10.11883/1001-1455(2002)04-0358-5.
ZENG F, PAN Y, HU S S. Evaluation of cushioning properties and energy-absorption capability of foam aluminium [J]. Explosion and Shock Waves, 2002, 22(4): 358–362. DOI: 10.11883/1001-1455(2002)04-0358-5.
|
[16] |
SHI Y, GAO X, PAN G. Design and load reduction performance analysis of mitigator of AUV during high speed water entry [J]. Ocean Engineering, 2019, 181: 314–329. DOI: 10.1016/j.oceaneng.2019.03.062.
|
[17] |
孙龙泉, 王都亮, 李志鹏, 等. 基于CEL方法的航行体高速入水泡沫铝缓冲装置降载性能分析 [J]. 振动与冲击, 2021, 40(20): 80–88. DOI: 10.13465/j.cnki.jvs.2021.20.011.
SUN L Q, WANG D L, LI Z P, et al. Analysis on load reduction performance of foamed aluminum buffer device for high-speed water entry of vehicle based on a CEL method [J]. Journal of Vibration and Shock, 2021, 40(20): 80–88. DOI: 10.13465/j.cnki.jvs.2021.20.011.
|
[18] |
HENNEAUX D, SCHROOYEN P, CHATELAIN P, et al. High-order enforcement of jumps conditions between compressible viscous phases: an extended interior penalty discontinuous Galerkin method for sharp interface simulation [J]. Computer Methods in Applied Mechanics and Engineering, 2023, 415: 116215. DOI: 10.1016/j.cma.2023.116215.
|
[19] |
LI Y, ZONG Z, SUN T Z. Classification of the collapse of a composite fairing during the oblique high-speed water entry [J]. Thin-Walled Structures, 2023, 182(12): 110260. DOI: 10.1016/j.tws.2022.110260.
|
[20] |
魏洪亮, 赵静, 徐志程, 等. 基于流固耦合的航行体高速入水规律研究 [J]. 导弹与航天运载技术, 2020(2): 33–37. DOI: 10.7654/j.issn.1004-7182.20200207.
WEI H L, ZHAO J, XU Z C, et al. Study on high-speed water entry law of trans-media vehicle based on fluid solid coupling [J]. Missiles and Space Vehicles, 2020(2): 33–37. DOI: 10.7654/j.issn.1004-7182.20200207.
|
[21] |
孙琦, 周军, 林鹏. 基于LS-DYNA的弹体撞水过程流固耦合动力分析 [J]. 系统仿真学报, 2010, 22(6): 1498–1501. DOI: 10.16182/j.cnki.joss.2010.06.005.
SUN Q, ZHOU J, LIN P. Dynamic analysis of fluid-structure interaction for water impact of projectile using LS-DYNA [J]. Journal of System Simulation, 2010, 22(6): 1498–1501. DOI: 10.16182/j.cnki.joss.2010.06.005.
|
[22] |
李尧. 航行体高速入水缓冲头帽的降载机制与行为特性研究 [D]. 大连: 大连理工大学, 2023: 23–25, 53–56.
LI Y. Load reduction mechanism and behavior characteristics of the buffering cap for the vehicle during the high-speed water entry [D]. Dalian: Dalian University of Technology, 2023: 23–25, 53–56.
|
[23] |
魏海鹏, 史崇镔, 孙铁志, 等. 基于ALE方法的航行体高速入水缓冲降载性能数值研究 [J]. 爆炸与冲击, 2021, 41(10): 104201. DOI: 10.11883/bzycj-2020-0461.
WEI H P, SHI C B, SUN T Z, et al. Numerical study on load-shedding performance of a high-speed water-entry vehicle based on an ALE method [J]. Explosion and Shock Waves, 2021, 41(10): 104201. DOI: 10.11883/bzycj-2020-0461.
|