Turn off MathJax
Article Contents
TANG Changxing, CAO Kelei, ZHAO Yu, ZHANG Jianwei, HUANG Jinlin, LYU Mengjie. Study on explosion-proof mechanism and damage level prediction of steel fiber reinforced cellular concrete slab in underwater contact explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0239
Citation: TANG Changxing, CAO Kelei, ZHAO Yu, ZHANG Jianwei, HUANG Jinlin, LYU Mengjie. Study on explosion-proof mechanism and damage level prediction of steel fiber reinforced cellular concrete slab in underwater contact explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0239

Study on explosion-proof mechanism and damage level prediction of steel fiber reinforced cellular concrete slab in underwater contact explosion

doi: 10.11883/bzycj-2024-0239
  • Received Date: 2024-07-16
  • Rev Recd Date: 2024-09-05
  • Available Online: 2024-09-06
  • In order to explore the underwater anti-explosion protection effect of steel fiber reinforced cellular concrete materials, the damage process of reinforced concrete slabs under underwater contact explosion was reproduced by the coupling method of smoothed particle hydrodynamics and finite element method (SPH-FEM). The validity of the simulation method was verified by comparing with the experimental results. On this basis, a three-dimensional refined simulation model of water-explosive-protective layer-reinforced concrete slab was established by the SPH-FEM coupling method. The damage evolution process, failure mode and failure mechanism of protective layer of steel fiber reinforced cellular concrete (SAP10S5, SAP10S10, SAP10S15 and SAP10S20) with different fiber ratios and explosive mass were studied, and the prediction curve of damage level of reinforced concrete slabs was constructed. The results show that the numerical simulation results are in good agreement with the experimental results, which verifies the effectiveness of the simulation method. Under the underwater contact explosion, the addition of protective layer of steel fiber reinforced cellular concrete can effectively reduce the damage degree of protected reinforced concrete (RC) slab, and its influence on the damage degree of RC slab decreases first and then increases with the increase of steel fiber volume fraction in the protective layer. Among them, the anti-explosion protection effect of protective layer of SAP10S15 ratio is the best. When the amount of explosive increases within a certain range, the protective layer of SAP10S15 ratio can still maintain a high proportion of energy consumption and effectively reduce the damage degree of the RC plate. When the amount of explosive is 0.25 kg, the damage index of RC slabs strengthened with protective layer of SAP10S15 has the most obvious attenuation compared with the unprotected scheme, which is 42.5%, and the damage level is reduced from serious damage to moderate damage. The prediction curve of constructed damage level can directly evaluate the influence of steel fiber volume fraction/explosive amount on the damage degree of RC panel. The above research results can provide reference for the anti-explosion protection design of wading concrete structures.
  • loading
  • [1]
    ZHAO X H, WANG G H, LU W B, et al. Experimental investigation of RC slabs under air and underwater contact explosions [J]. European Journal of Environmental and Civil Engineering, 2021, 25(1): 190–204. DOI: 10.1080/19648189.2018.1528892.
    [2]
    YANG G D, WANG G H, LU W B, et al. Experimental and numerical study of damage characteristics of RC slabs subjected to air and underwater contact explosions [J]. Marine Structures, 2019, 66: 242–257. DOI: 10.1016/j.marstruc.2019.04.009.
    [3]
    张社荣, 孔源, 王高辉. 水下和空中爆炸时混凝土重力坝动态响应对比分析 [J]. 振动与冲击, 2014, 33(17): 47–54. DOI: 10.13465/j.cnki.jvs.2014.17.009.

    ZHANG S R, KONG Y, WANG G H. Dynamic responses of a concrete gravity dam subjected to underwater and air explosions [J]. Journal of Vibration and Shock, 2014, 33(17): 47–54. DOI: 10.13465/j.cnki.jvs.2014.17.009.
    [4]
    WANG G H, ZHANG S R, KONG Y, et al. Comparative study of the dynamic response of concrete gravity dams subjected to underwater and air explosions [J]. Journal of Performance of Constructed Facilities, 2015, 29(4): 04014092. DOI: 10.1061/(ASCE)CF.1943-5509.0000589.
    [5]
    WANG Y, LIAO T Y, CHI H, et al. Damage behavior of concrete members subjected to underwater contact explosion [J]. Engineering Failure Analysis, 2023, 151: 107412. DOI: 10.1016/J.ENGFAILANAL.2023.107412.
    [6]
    WEI W L, CHEN Y Q, REN X J, et al. Experimental and numerical study on the influence of plastic-modified concrete as attenuation layer on explosion effect [J]. International Journal of Structural Stability and Dynamics, 2022, 22(11): 2250116. DOI: 10.1142/S0219455422501164.
    [7]
    WANG W, SONG X D, HUO Q, et al. Experimental and numerical study on local damage effect of ultra-early-strength reinforced concrete slabs (URCS) under contact explosion [J]. Engineering Structures, 2023, 294: 116741. DOI: 10.1016/J.ENGSTRUCT.2023.116741.
    [8]
    KIM J, LEE J, JUNG W, et al. Testing the anti-explosion protection of HPFRCC for ready-mixed concrete system based on fiber selection and resistance to live explosives [J]. Case Studies in Construction Materials, 2022, 17: e01249. DOI: 10.1016/J.CSCM.2022.E01249.
    [9]
    SHI S Q, LIAO Y, PENG X Q, et al. Behavior of polyurea-woven glass fiber mesh composite reinforced RC slabs under contact explosion [J]. International Journal of Impact Engineering, 2019, 132: 103335. DOI: 10.1016/j.ijimpeng.2019.103335.
    [10]
    LIU S C, ZHAO X H, FANG H Y, et al. Study on the protective performance of polymer layer to RC slabs under underwater explosions [J]. Ocean Engineering, 2023, 282: 114997. DOI: 10.1016/J.OCEANENG.2023.114997.
    [11]
    刘佳, 崔传安, 徐畅. 爆炸波在硬质聚氨酯泡沫中的衰减特性模拟 [J]. 兵器装备工程学报, 2017, 38(9): 164–167. DOI: 10.11809/scbgxb2017.09.035.

    LIU J, CUI C A, XU C. Simulation of explosive wave attenuation characteristics in rigid polyurethane foam [J]. Journal of Ordnance Equipment Engineering, 2017, 38(9): 164–167. DOI: 10.11809/scbgxb2017.09.035.
    [12]
    LIU Z D, ZHAO X H, FANG H Y, et al. Investigation on the damage features and dynamic response of reinforced concrete slabs with polyurethane sacrificial cladding under close-range explosions [J]. Construction and Building Materials, 2023, 395: 132149. DOI: 10.1016/J.CONBUILDMAT.2023.132149.
    [13]
    孔祥清, 李若男, 常雅慧, 等. 泡沫填充负泊松比蜂窝夹层结构的抗爆性能数值模拟 [J]. 兵工学报, 2024, 45(9): 3091–3104. DOI: 10.12382/bgxb.2023.0607.

    KONG X Q, LI R N, CHANG Y H, et al. Numerical simulation of blast resistance of foam-filled Auxetic honeycomb sandwich structures [J]. Acta Armamentarii, 2024, 45(9): 3091–3104. DOI: 10.12382/bgxb.2023.0607.
    [14]
    CAO K L, FU Q F, ZHANG J W, et al. Study on the protection mechanism and damage grade prediction of different corrugated steel-concrete composite structures under underwater contact explosion [J]. Ocean Engineering, 2024, 292: 116520. DOI: 10.1016/J.OCEANENG.2023.116520.
    [15]
    YU S Y, WU H X, ZHANG G K, et al. Experimental study on anti-shallow-buried-explosion capacity of a corrugated steel-plain concrete composite structure [J]. International Journal of Impact Engineering, 2023, 172: 104393. DOI: 10.1016/J.IJIMPENG.2022.104393.
    [16]
    赵春风, 张利, 李晓杰. 近场爆炸下波纹双钢板混凝土组合墙板的损伤破坏及抗爆性能 [J]. 高压物理学报, 2024, 38(1): 014102. DOI: 10.11858/gywlxb.20230727.

    ZHAO C F, ZHANG L, LI X J. Damage failure and anti-blast performance of concrete-infilled double steel corrugated-plate wall under near field explosion [J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 014102. DOI: 10.11858/gywlxb.20230727.
    [17]
    KUŠTER MARIĆ M, IVANOVIĆ A, FUSIĆ M, et al. Experimental investigation of the explosion effects on reinforced concrete slabs with fibers [J]. Buildings, 2024, 14(4): 1080. DOI: 10.3390/BUILDINGS14041080.
    [18]
    袁名正, 潘腾, 卞晓兵, 等. 曲面型纤维复材防护掩体在爆炸冲击波下的响应特性 [J]. 兵工学报, 2023, 44(12): 3909–3920. DOI: 10.12382/bgxb.2023.0735.

    YUAN M Z, PAN T, BIAN X B, et al. Response characteristics of curved fiber composite protective shelter under the action of explosive shock wave [J]. Acta Armamentarii, 2023, 44(12): 3909–3920. DOI: 10.12382/bgxb.2023.0735.
    [19]
    ZHAO X H, SUN J S, ZHAO H N, et al. Experimental and mesoscopic modeling numerical researches on steel fiber reinforced concrete slabs under contact explosion [J]. Structures, 2024, 61: 106114. DOI: 10.1016/J.ISTRUC.2024.106114.
    [20]
    曹克磊. 钢纤维增强多孔混凝土复合材料静动态力学特性及其水下抗爆防护效果研究 [D]. 天津: 天津大学, 2020: 1–177. DOI: 10.27356/d.cnki.gtjdu.2020.003413.

    CAO K L. Research on the static and dynamic mechanical characteristics of steel fiber reinforced cellular concrete composites and its underwater anti-explosion protection effects [D]. Tianjin: Tianjin University, 2020: 1–177. DOI: 10.27356/d.cnki.gtjdu.2020.003413.
    [21]
    甘露, 陈力, 宗周红, 等. 近距离爆炸比例爆距的界定标准及荷载模型 [J]. 爆炸与冲击, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.

    GAN L, CHEN L, ZONG Z H, et al. Definition of scaled distance of close-in explosion and blast load calculation model [J]. Explosion and Shock Waves, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.
    [22]
    HAI L, REN X D. Computational investigation on damage of reinforced concrete slab subjected to underwater explosion [J]. Ocean Engineering, 2020, 195: 106671. DOI: 10.1016/j.oceaneng.2019.106671.
    [23]
    ZHAO C F, LU X, WANG Q, et al. Experimental and numerical investigation of steel-concrete (SC) slabs under contact blast loading [J]. Engineering Structures, 2019, 196: 109337. DOI: 10.1016/j.engstruct.2019.109337.
    [24]
    PAN Z F, ZHANG H P, ZENG B, et al. Statistical evaluation of CEB-FIP 2010 model for concrete creep and shrinkage [J]. Materials, 2023, 16(4): 1576. DOI: 10.3390/MA16041576.
    [25]
    尹华伟, 蒋轲, 张料, 等. 钢纤维混凝土板在冲击与爆炸荷载下的K&C模型 [J]. 高压物理学报, 2020, 34(3): 034205. DOI: 10.11858/gywlxb.20190853.

    YIN H W, JIANG K, ZHANG L, et al. K&C model of steel fiber reinforced concrete plate under impact and blast load [J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034205. DOI: 10.11858/gywlxb.20190853.
    [26]
    REIFARTH C, CASTEDO R, SANTOS A P, et al. Numerical and experimental study of externally reinforced RC slabs using FRPs subjected to close-in blast loads [J]. International Journal of Impact Engineering, 2021, 156: 103939. DOI: 10.1016/J.IJIMPENG.2021.103939.
    [27]
    NAIKNIMBALKAR Y P, SINGH S B, MATSAGAR V A. Analytical assessment of dynamic response of fiber-reinforced polymer laminate on concrete wall under blast loads [J]. Sādhanā, 2024, 49(3): 218. DOI: 10.1007/S12046-024-02563-3.
    [28]
    KONG X, QI X, GU Y, et al. Numerical evaluation of blast resistance of RC slab strengthened with AFRP [J]. Construction and Building Materials, 2018, 178: 244–53. DOI: 10.1016/j.conbuildmat.2018.05.081.
    [29]
    CHILVERS J, YANG L, LIN X S, et al. Experimental and numerical investigations of hybrid-fibre engineered cementitious composite panels under contact explosions [J]. Engineering Structures, 2022, 266: 114582. DOI: 10.1016/J.ENGSTRUCT.2022.114582.
    [30]
    袁良柱, 陈美多, 谢雨珊, 等. 细观非连续介质的应力波传播研究 [J]. 爆炸与冲击, 2024, 44(9): 091422. DOI: 10.11883/bzycj-2023-0365.

    YUAN L Z, CHEN M D, XIE Y S, et al. Investigation on stress wave propagation in mesoscopic discontinuous medium [J]. Explosion and Shock Waves, 2024, 44(9): 091422. DOI: 10.11883/bzycj-2023-0365.
    [31]
    ZHAO H N, ZHAO X H, FANG H Y, et al. Experimental investigation of steel fiber reinforced concrete slabs subjected to underwater contact explosions [J]. Ocean Engineering, 2023, 281: 114664. DOI: 10.1016/J.OCEANENG.2023.114664.
    [32]
    XIAO Y, ZHU W Q, LI M H, et al. Concrete spalling behavior and damage evaluation of concrete members with different cross-sectional properties under contact explosion [J]. International Journal of Impact Engineering, 2023, 181: 104753. DOI: 10.1016/J.IJIMPENG.2023.104753.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views (144) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return