Volume 44 Issue 12
Dec.  2024
Turn off MathJax
Article Contents
LUO Zongmu, LI Ke, CHEN Hao, ZHANG Yuwu, LIANG Minzu, LIN Yuliang. Acceleration response test and damage analysis of dummy head under explosion shock wave[J]. Explosion And Shock Waves, 2024, 44(12): 121435. doi: 10.11883/bzycj-2024-0242
Citation: LUO Zongmu, LI Ke, CHEN Hao, ZHANG Yuwu, LIANG Minzu, LIN Yuliang. Acceleration response test and damage analysis of dummy head under explosion shock wave[J]. Explosion And Shock Waves, 2024, 44(12): 121435. doi: 10.11883/bzycj-2024-0242

Acceleration response test and damage analysis of dummy head under explosion shock wave

doi: 10.11883/bzycj-2024-0242
  • Received Date: 2024-07-17
  • Rev Recd Date: 2024-10-08
  • Available Online: 2024-11-04
  • Publish Date: 2024-12-01
  • In military operations, terrorist attacks, accidents and other situations, blast injury has become the main mode of casualties, among which the proportion of blast-induced traumatic brain injury (bTBI) has increased significantly, but the specific injury mechanism is still unclear. In order to obtain the acceleration response of human head under the action of explosion shock wave, establish the internal relationship between acceleration and explosion shock wave overpressure, and evaluate the head injury evaluation criteria based on acceleration parameters, this study carried out the air static explosion test of various TNT equivalent spherical charges by using the dummy model with standard body level, on which the acceleration time history curves and the free field overpressure curves of the model head at different scaled distances were obtained. Based on peak linear acceleration, head injury criterion (HIC) and head impact power (HIP), the risk level of head injury was quantitatively analyzed, and the applicability and effectiveness of the three injury assessment indexes were evaluated in the explosion scene. The results show that the acceleration of the dummy head at 4.2 m from the detonation center increases rapidly with the increase of TNT equivalent. In the range from 1 to 4 kg TNT mass, the peak acceleration in the direction of detonation increases from 16.29g to 70.11g. The peak acceleration in each direction is linearly correlated with the peak overpressure. Under the experimental conditions, the maximum risk of mild traumatic brain injury (mTBI) predicted by the three evaluation indexes was 25%, 10%, and 5%, where HIP index evaluated the lower risk of mTBI. When the three evaluation indexes reached the threshold of severe head injury, the corresponding peak overpressure was 0.322, 0.300 and 0.332 MPa, respectively. The peak overpressure corresponding to the HIC index was the lowest, indicating that it had the strongest sensitivity to predict severe head injury.
  • loading
  • [1]
    柳占立, 杜智博, 张家瑞, 等. 颅脑爆炸伤致伤机制及防护研究进展 [J]. 爆炸与冲击, 2022, 42(4): 041101. DOI: 10.11883/bzycj-2021-0053.

    LIU Z L, DU Z B, ZHANG J R, et al. Progress in the mechanism and protection of blast-induced traumatic brain injury [J]. Explosion and Shock Waves, 2022, 42(4): 041101. DOI: 10.11883/bzycj-2021-0053.
    [2]
    KEMPURAJ D, MOHAN R R. Blast injury: impact to the cornea [J]. Experimental Eye Research, 2024, 244: 109915. DOI: 10.1016/j.exer.2024.109915.
    [3]
    DEBENHAM L, KHAN N, NOUHAN B, et al. A systematic review of otologic injuries sustained in civilian terrorist explosions [J]. European Archives of Oto-Rhino-Laryngology, 2024, 281(5): 2223–2233. DOI: 10.1007/s00405-023-08393-z.
    [4]
    康越, 马天, 黄献聪, 等. 颅脑爆炸伤数值模拟研究进展: 建模、力学机制及防护 [J]. 爆炸与冲击, 2023, 43(6): 061101. DOI: 10.11883/bzycj-2022-0521.

    KANG Y, MA T, HUANG X C, et al. Advances in numerical simulation of blast-induced traumatic brain injury: modeling, mechanical mechanism and protection [J]. Explosion and Shock Waves, 2023, 43(6): 061101. DOI: 10.11883/bzycj-2022-0521.
    [5]
    ROSENFELD J V, MCFARLANE A C, BRAGGE P, et al. Blast-related traumatic brain injury [J]. The Lancet Neurology, 2013, 12(9): 882–893. DOI: 10.1016/S1474-4422(13)70161-3.
    [6]
    蔡志华, 贺葳, 汪剑辉, 等. 爆炸波致颅脑损伤力学机制与防护综述 [J]. 兵工学报, 2022, 43(2): 467–480. DOI: 10.3969/j.issn.1000-1093.2020.02.025.

    CAI Z H, HE W, HUANG J H, et al. Review on mechanical mechanism of blast-induced traumatic brain injury and protection technology [J]. Acta Armamentarii, 2022, 43(02): 467–480. DOI: 10.3969/j.issn.1000-1093.2020.02.025.
    [7]
    National Counterterrorism Center. A chronology of significant international terrorism for 2004 [M]. Washington: National Counterterrorism Center, 2005.
    [8]
    崔蔚. 江苏响水“3·21”特别重大爆炸事故调查与启示 [J]. 消防科学与技术, 2020, 39(4): 570–575. DOI: 10.3969/j.issn.1009-0029.2020.04.039.

    CUI W. Investigation and inspiration of 3·21 particularly serious explosion in Xiangshui, Jiangsu [J]. Fire Science and Technology, 2020, 39(4): 570–575. DOI: 10.3969/j.issn.1009-0029.2020.04.039.
    [9]
    TAYLOR P A, LUDWIGSEN J S, FORD C C. Investigation of blast-induced traumatic brain injury [J]. Brain Injury, 2014, 28(7): 879–895. DOI: 10.3109/02699052.2014.888478.
    [10]
    赵辉, 朱峰. 原发性颅脑冲击伤的生物力学机制 [J]. 创伤外科杂志, 2016, 18(6): 375–378. DOI: 10.3969/j.issn.1009-4237.2016.06.017.

    ZHAO H, ZHU F. The biomechanical mechanism of primary blast brain injury [J]. Journal of Traumatic Surgery, 2016, 18(6): 375–378. DOI: 10.3969/j.issn.1009-4237.2016.06.017.
    [11]
    MOSS W C, KING M J, BLACKMAN E G. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design [J]. Physical Review Letters, 2009, 103(10): 108702. DOI: 10.1103/PhysRevLett.103.108702.
    [12]
    LI Z J, DU Z B, YOU X C, et al. Numerical study on dynamic mechanism of brain volume and shear deformation under blast loading [J]. Acta Mechanica Sinica, 2019, 35(5): 1104–1119. DOI: 10.1007/s10409-019-00875-w.
    [13]
    GOELLER J, WARDLAW A, TREICHLER D, et al. Investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury [J]. Journal of Neurotrauma, 2012, 29(10): 1970–1981. DOI: 10.1089/neu.2011.2224.
    [14]
    YU X C, WU T C, NGUYEN T T N, et al. Investigation of blast-induced cerebrospinal fluid cavitation: insights from a simplified head surrogate [J]. International Journal of Impact Engineering, 2022, 162: 104146. DOI: 10.1016/j.ijimpeng.2021.104146.
    [15]
    CHEN Y, HUANG W. Non-impact, blast-induced mild TBI and PTSD: concepts and caveats [J]. Brain Injury, 2011, 25(7/8): 641–650. DOI: 10.3109/02699052.2011.580313.
    [16]
    GULLOTTI D M, BEAMER M, PANZER M B, et al. Significant head accelerations can influence immediate neurological impairments in a murine model of blast-induced traumatic brain injury [J]. Journal of Biomechanical Engineering, 2014, 136(9): 091004. DOI: 10.1115/1.4027873.
    [17]
    MAO H J, UNNIKRISHNAN G, RAKESH V, et al. Untangling the effect of head acceleration on brain responses to blast waves [J]. Journal of Biomechanical Engineering, 2015, 137(12): 124502. DOI: 10.1115/1.4031765.
    [18]
    DU Z B, WANG P, LUO P, et al. Mechanical mechanism and indicator of diffuse axonal injury under blast-type acceleration [J]. Journal of Biomechanics, 2023, 156: 111674. DOI: 10.1016/j.jbiomech.2023.111674.
    [19]
    SARVGHAD-MOGHADDAM H, REZAEI A, ZIEJEWSKI M, et al. Correlative analysis of head kinematics and brain’s tissue response: a computational approach toward understanding the mechanisms of blast TBI [J]. Shock Waves, 2017, 27(6): 919–927. DOI: 10.1007/s00193-017-0749-1.
    [20]
    VERSACE J. A review of the severity index [C] // Proceeding of the 15th Stapp Car Crash Conference. San Diego: Society of Automotive Engineers, 1971: 771–796. DOI: 10.4271/710881.
    [21]
    CAMPOLETTANO E T, GELLNER R A, SMITH E P, et al. Development of a concussion risk function for a youth population using head linear and rotational acceleration [J]. Annals of Biomedical Engineering, 2020, 48: 92–103. DOI: 10.1007/s10439-019-02382-2.
    [22]
    NEWMAN J A, SHEWCHENKO N. A proposed new biomechanical head injury assessment function-the maximum power index [R]. SAE Technical Paper, 2000: 362. DOI: 10.4271/2000-01-sc16.
    [23]
    TAKHOUNTS E G, HASIJA V, RIDELLA S A, et al. Kinematic rotational brain injury criterion (BRIC) [C]//Proceedings of the 22nd Enhanced Safety of Vehicles Conference. Washington: NHTSA, 2011: 1–10.
    [24]
    KIMPARA H, IWAMOTO M. Mild traumatic brain injury predictors based on angular accelerations during impacts [J]. Annals of Biomedical Engineering, 2012, 40: 114–126. DOI: 10.1007/s10439-011-0414-2.
    [25]
    LOCKHART P, CRONIN D, WILLIAMS K, et al. Investigation of head response to blast loading [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2011, 70(2): E29–E36. DOI: 10.1097/TA.0b013e3181de3f4b.
    [26]
    SHRIDHARANI J K, WOOD G W, PANZER M B, et al. Porcine head response to blast [J]. Frontiers in Neurology, 2012, 3: 70. DOI: 10.3389/fneur.2012.00070.
    [27]
    SINGH D, CRONIN D S, HALADUICK T N. Head and brain response to blast using sagittal and transverse finite element models [J]. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30(4): 470–489. DOI: 10.1002/cnm.2612.
    [28]
    马伟杰, 郝烨, 刘志新, 等. 中国中等尺寸成年男性人体测量学特征参数研究 [C]//2021中国汽车工程学会年会论文集(4). 上海: 中国汽车工程学会, 2021: 6. DOI: 10.26914/c.cnkihy.2021.029515.
    [29]
    李向东, 杜忠华. 目标易损性 [M]. 北京: 北京理工大学出版社, 2013: 44–49.
    [30]
    卢芳云, 李翔宇, 田占东, 等. 武器毁伤与评估 [M]. 北京: 科学出版社, 2021: 120–123.
    [31]
    QI Z Z, LIN Y L, LIANG W, et al. Explosion power evaluation based on the energy absorption characteristics of expansion tube structure [J]. International Journal of Impact Engineering, 2024, 186: 104886. DOI: 10.1016/j.ijimpeng.2024.104886.
    [32]
    PRZEKWAS A, GARIMELLA H T, TAN X G, et al. Biomechanics of blast TBI with time-resolved consecutive primary, secondary, and tertiary loads [J]. Military Medicine, 2019, 184(S1): 195–205. DOI: 10.1093/milmed/usy344.
    [33]
    DIONNE J P, LEVINE J, MAKRIS A. Acceleration-based methodology to assess the blast mitigation performance of explosive ordnance disposal helmets [J]. Shock Waves, 2018, 28(1): 5–18. DOI: 10.1007/s00193-017-0737-5.
    [34]
    ZHANG L Y, YANG K H, KING A I. A proposed injury threshold for mild traumatic brain injury [J]. Journal of Biomechanical Engineering, 2004, 126(2): 226–236. DOI: 10.1115/1.1691446.
    [35]
    KING D, HUME P, GISSANE C, et al. The influence of head impact threshold for reporting data in contact and collision sports: systematic review and original data analysis [J]. Sports Medicine, 2016, 46: 151–169. DOI: 10.1007/s40279-015-0423-7.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(3)

    Article Metrics

    Article views (54) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return