Citation: | WU Hao, CEN Guohua, CHENG Yuehua, ZHANG Yu. Design of shield based on integrated effect of penetration and moving charge explosion of warheads[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0244 |
[1] |
FAN Y, CHEN L, YU R Q, et al. Experimental study of damage to ultra-high performance concrete slabs subjected to partially embedded cylindrical explosive charges [J]. International Journal of Impact Engineering, 2022, 168: 104298. DOI: 10.1016/j.ijimpeng.2022.104298.
|
[2] |
LAI J Z, GUO X J, ZHU Y Y. Repeated penetration and different depth explosion of ultra-high performance concrete [J]. International Journal of Impact Engineering, 2015, 84: 1–12. DOI: 10.1016/j.ijimpeng.2015.05.006.
|
[3] |
程月华, 周飞, 吴昊. 抗战斗部侵彻爆炸作用的混凝土遮弹层设计 [J]. 爆炸与冲击, 2023, 43(4): 045101. DOI: 10.11883/bzycj-2022-0346.
CHENG Y H, ZHOU F, WU H. Design of concrete shield against the combination of penetration and explosion of warheads [J]. Explosion and Shock Waves, 2023, 43(4): 045101. DOI: 10.11883/bzycj-2022-0346.
|
[4] |
YANG Y Z, FANG Q, KONG X Z. Failure mode and stress wave propagation in concrete target subjected to a projectile penetration followed by charge explosion: experimental and numerical investigation [J]. International Journal of Impact Engineering, 2023, 177: 104595. DOI: 10.1016/j.ijimpeng.2023.104595.
|
[5] |
赖建中, 尹雪祥, 李宏基, 等. 基于功能梯度原理的超高性能混凝土抗侵彻爆炸性能 [J]. 硅酸盐学报, 2020, 48(8): 1188–1200. DOI: 10.14062/j.issn.0454-5648.20200231.
LAI J Z, YIN X X, LI H J, et al. Anti-penetration and explosion performance of ultra-high performance concrete based on the principle of functional gradient [J]. Journal of the Chinese Ceramic Society, 2020, 48(8): 1188–1200. DOI: 10.14062/j.issn.0454-5648.20200231.
|
[6] |
CHENG Y H, ZHOU F, WU H, et al. Resistance of composite target against combined effects of large caliber projectile penetration and successive charge explosion [J]. International Journal of Impact Engineering, 2022, 168: 104288. DOI: 10.1016/j.ijimpeng.2022.104288.
|
[7] |
李述涛, 魏万里, 陈叶青, 等. 基于体积填充法的弹体侵爆一体毁伤效应研究 [J]. 振动与冲击, 2023, 42(12): 194–204. DOI: 10.13465/j.cnki.jvs.2023.012.022.
LI S T, WEI W L, CHEN Y Q, et al. A study on damage effect of projectile penetration and explosion integration based on a volume filling method [J]. Journal of Vibration and Shock, 2023, 42(12): 194–204. DOI: 10.13465/j.cnki.jvs.2023.012.022.
|
[8] |
WEI W L, CHEN Y Q, WANG Z Q, et al. Research on damage effect of the concrete target under the penetration and explosion integration [J]. Structures, 2023, 47: 1511–1523. DOI: 10.1016/j.istruc.2022.11.083.
|
[9] |
WEI W L, CHEN Y Q, WANG Z Q, et al. Research on damage effect of penetration and explosion integration based on volume filling method [J]. International Journal of Impact Engineering, 2023, 177: 104591. DOI: 10.1016/j.ijimpeng.2023.104591.
|
[10] |
FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
|
[11] |
孙传杰, 卢永刚, 张方举, 等. 新型头形弹体对混凝土的侵彻 [J]. 爆炸与冲击, 2010, 30(3): 269–275. DOI: 10.11883/1001-1455(2010)03-0269-07.
SUN C J, LU Y G, ZHANG F J, et al. Penetration of cylindrical-nose-tip projectiles into concrete targets [J]. Explosion and Shock Waves, 2010, 30(3): 269–275. DOI: 10.11883/1001-1455(2010)03-0269-07.
|
[12] |
王可慧, 周刚, 李明, 等. 弹体高速侵彻钢筋混凝土靶试验研究 [J]. 爆炸与冲击, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.
WANG K H, ZHOU G, LI M, et al. Experimental research on the mechanism of a high-velocity projectile penetrating into a reinforced concrete target [J]. Explosion and Shock Waves, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.
|
[13] |
GAO C, KONG X Z, FANG Q. Experimental and numerical investigation on the attenuation of blast waves in concrete induced by cylindrical charge explosion [J]. International Journal of Impact Engineering, 2023, 174: 104491. DOI: 10.1016/j.ijimpeng.2023.104491.
|
[14] |
高矗, 孔祥振, 方秦, 等. 混凝土中爆炸应力波衰减规律的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.
GAO C, KONG X Z, FANG Q, et al. Numerical study on attenuation of stress wave in concrete subjected to explosion [J]. Explosion and Shock Waves, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.
|
[15] |
王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.
WANG Y, KONG X Z, FANG Q, et al. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion [J]. Explosion and Shock Waves, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.
|
[16] |
ARMENDT B F, SPERRAZZA J. Air blast measurements around moving explosive charges, part Ⅲ: AD0114950 [R]. Aberdeen: Army Ballistics Research Laboratory, 1956.
|
[17] |
MARRS F, HEIGES M. Soil modeling for mine blast simulation [C]//13th International LS-DYNA Users Conference. Dearborn: Schwer Engineering and Consulting Services, 2014.
|
[18] |
DOBRATZ B M. LLNL explosives handbook: properties of chemical explosives and explosives and explosive simulants: UCRL-52997 [R]. Livermore: Lawrence Livermore National Laboratory, 1981.
|
[19] |
LEE L, FINGER M, COLLINS W. JWL Equation of state coefficients for high explosive: UCID-16189 [R]. Livermore: Lawrence Livermore National Laboratory, 1973.
|
[20] |
LU J P, LOCHERT I J, KENNEDY D L, et al. Simulation of sympathetic reaction tests for PBXN-109 [C]//Proceedings of 13th International Symposium on Detonation. New York: ISB, 2006: 1338–1349.
|
[21] |
RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500, numerical analysis using a new macroscopic concrete model for hydrocodes [C]//Proceedings of the 9th International Symposium on Interaction of the Effects of Munitions with Structures. Berlin: ISIEMS, 1999: 315–322.
|
[22] |
CHENG Y H, WU H, JIANG P F, et al. Ballistic resistance of high-strength armor steel against ogive-nosed projectile impact [J]. Thin-Walled Structures, 2023, 183: 110350. DOI: 10.1016/j.tws.2022.110350.
|
[23] |
刘彦, 段卓平, 王新生, 等. 不同厚度壳体装药在混凝土中爆炸的实验研究 [J]. 北京理工大学学报, 2010, 30(7): 771–773, 848. DOI: 10.15918/j.tbit1001-0645.2010.07.008.
LIU Y, DUAN Z P, WANG X S, et al. Experiments on explosion of explosives with different thickness shells in concrete [J]. Transactions of Beijing Institute of Technology, 2010, 30(7): 771–773, 848. DOI: 10.15918/j.tbit1001-0645.2010.07.008.
|
[24] |
陈龙明, 李志斌, 陈荣. 装药动爆冲击波特性研究 [J]. 爆炸与冲击, 2020, 40(1): 013201. DOI: 10.11883/bzycj-2019-0029.
CHEN L M, LI Z B, CHEN R. Characteristics of dynamic explosive shock wave of moving charge [J]. Explosion and Shock Waves, 2020, 40(1): 013201. DOI: 10.11883/bzycj-2019-0029.
|
[25] |
欧育湘. 炸药学 [M]. 北京: 北京理工大学出版社, 2014: 213–230.
OU Y X. Explosives [M]. Beijing: Beijing Institute of Technology Press, 2014: 213–230.
|
[26] |
程月华, 吴昊, 岑国华, 等. 侵彻爆炸联合作用下超高性能混凝土遮弹层设计 [J]. 爆炸与冲击, 2025, 45(1): 013301. DOI: 10.11883/bzycj-2024-0061.
CHENG Y H, WU H, CEN G H, et al. Design of ultra-high performance concrete shield against combined penetration and explosion of warheads [J]. Explosion and Shock Waves, 2025, 45(1): 013301. DOI: 10.11883/bzycj-2024-0061.
|
[27] |
吴昊, 张瑜, 程月华, 等. 典型战斗部侵彻爆炸下块石混凝土的遮弹层设计 [J/OL]. 爆炸与冲击, 2024[2024-07-08] https://www.bzycj.cn/article/doi/ 10.11883/bzycj-2024-0136. DOI: 10.11883/bzycj-2024-0136.
WU H, ZHANG Y, CHENG Y H, et al. Design of rock-rubble concrete shield against the combination of penetration and explosion of warheads [J/OL]. Explosion and Shock Waves, 2024[2024-07-08] https://www.bzycj.cn/article/doi/ 10.11883/bzycj-2024-0136. DOI: 10.11883/bzycj-2024-0136.
|