Citation: | WANG Shuai, DENG Zhifang, HE Liling, CHEN Hongyong, LI Jicheng, YAN Yixia, CHEN Gang. Influence of serrated configuration on transverse overload of the projectile penetrating with a small attack angle[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0250 |
[1] |
余同希, 卢国兴, 张雄. 能量吸收: 结构与材料的力学行为和塑性分析 [M]. 北京: 科学出版社, 2019: 303–330.
|
[2] |
诺曼·琼斯. 结构冲击 [M]. 许骏, 蒋平, 译. 北京: 国防工业出版社, 2018: Ⅹ–Ⅺ.
JONES N. Structural impact [M]. XU J, JIANG P, trans. Beijing: National Defense Industry Press, 2018: Ⅹ–Ⅺ.
|
[3] |
WANG S, XU F, ZHANG X Y, et al. A directional framework of similarity laws for geometrically distorted structures subjected to impact loads [J]. International Journal of Impact Engineering, 2022, 161: 104092. DOI: 10.1016/j.ijimpeng.2021.104092.
|
[4] |
陈小伟. 穿甲/侵彻力学的理论建模与分析 [M]. 北京: 科学出版社, 2019: 281–470.
CHEN X W. Modelling on the perforation and penetration [M]. Beijing: Science Press, 2019: 281–470.
|
[5] |
BEN-DOR G, DUBINSKY A, ELPERIN T. 高速侵彻动力学: 工程模型和方法 [M]. 武海军, 黄风雷, 皮爱国, 译. 北京: 科学出版社, 2020: 241–298.
BEN-DOR G, DUBINSKY A, ELPERIN T. High-speed penetration dynamics: engineering models and methods [M]. WU H J, HUANG F L, PI A G, trans. Beijing: Science Press, 2020: 241–298.
|
[6] |
JONES S E, RULE W K, JEROME D M, et al. On the optimal nose geometry for a rigid penetrator [J]. Computational Mechanics, 1998, 22(5): 413–417. DOI: 10.1007/s004660050373.
|
[7] |
BEN-DOR G, DUBINSKY A, ELPERIN T. Shape optimization of impactor penetrating into concrete or limestone targets [J]. International Journal of Solids and Structures, 2003, 40(17): 4487–4500. DOI: 10.1016/S0020-7683(03)00212-9.
|
[8] |
刘坚成, 黄风雷, 皮爱国, 等. 异型头部弹体增强侵彻性能机理研究 [J]. 爆炸与冲击, 2014, 34(4): 409–414. DOI: 10.11883/1001-1455(2014)04-0409-06.
LIU J C, HUANG F L, PI A G, et al. On enhanced penetration performance of modified nose projectiles [J]. Explosion and Shock Waves, 2014, 34(4): 409–414. DOI: 10.11883/1001-1455(2014)04-0409-06.
|
[9] |
柴传国, 武海军, 皮爱国, 等. 异形头部弹体中低速侵彻混凝土的实验研究 [J]. 北京理工大学学报, 2015, 35(8): 787–791. DOI: 10.15918/j.tbit1001-0645.2015.08.004.
CHAI C G, WU H J, PI A G, et al. Experimental study on nose headed penetrator penetrating to concrete target with middle and low speed [J]. Transactions of Beijing Institute of Technology, 2015, 35(8): 787–791. DOI: 10.15918/j.tbit1001-0645.2015.08.004.
|
[10] |
张欣欣, 武海军, 黄风雷, 等. 刻槽弹侵彻混凝土受力模型研究 [J]. 爆炸与冲击, 2016, 36(1): 75–80. DOI: 10.11883/1001-1455(2016)01-0075-06.
ZHANG X X, WU H J, HUANG F L, et al. Mechanical model of the grooved-tapered projectile penetrating concrete targets [J]. Explosion and Shock Waves, 2016, 36(1): 75–80. DOI: 10.11883/1001-1455(2016)01-0075-06.
|
[11] |
皮爱国, 黄风雷. 大长细比动能弹体弹塑性动力响应数值模拟 [J]. 北京理工大学学报, 2007, 27(8): 666–670. DOI: 10.3969/j.issn.1001-0645.2007.08.003.
PI A G, HUANG F L. Numerical simulation of the elastic-plastic dynamic response of a slender kinetic energy penetrator [J]. Transactions of Beijing Institute of Technology, 2007, 27(8): 666–670. DOI: 10.3969/j.issn.1001-0645.2007.08.003.
|
[12] |
CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. DOI: 10.1016/S0734-743X(02)00005-2.
|
[13] |
高旭东, 李庆明. 带攻角斜侵彻混凝土的弹道偏转分析 [J]. 兵工学报, 2014, 35(S2): 33–39.
GAO X D, LI Q M. Trajectory analysis of projectile obliquely penetrating into concrete target at attack angle [J]. Acta Armamentarii, 2014, 35(S2): 33–39.
|
[14] |
尹放林, 王明洋, 钱七虎, 等. 弹丸斜入射对侵彻深度的影响 [J]. 爆炸与冲击, 1998, 18(1): 69–76. DOI: 10.11883/1001-1455(1998)01-0069-8.
YIN F L, WANG M Y, QIAN Q H, et al. Penetration depth of projectile oblique into target [J]. Explosion and Shock Waves, 1998, 18(1): 69–76. DOI: 10.11883/1001-1455(1998)01-0069-8.
|
[15] |
闪雨, 黄风雷, 武海军, 等. 动能弹非正侵彻弹道稳定性研究 [C]//第六届全国强动载效应及防护学术会议暨2014年复杂介质/结构的动态力学行为创新研究群体学术研讨会论文集. 北京: 中国力学学会爆炸力学专业委员会, 2014: 450–459.
|
[16] |
段卓平, 李淑睿, 马兆芳, 等. 刚性弹体斜侵彻贯穿混凝土靶的姿态偏转理论模型 [J]. 爆炸与冲击, 2019, 39(6): 063302. DOI: 10.11883/bzycj-2018-0411.
DUAN Z P, LI S R, MA Z F, et al. Analytical model for attitude deflection of rigid projectile during oblique perforation of concrete targets [J]. Explosion and Shock Waves, 2019, 39(6): 063302. DOI: 10.11883/bzycj-2018-0411.
|
[17] |
何丽灵, 郭虎, 陈小伟, 等. 结构变形对深侵彻弹体偏转的影响 [J]. 爆炸与冲击, 2023, 43(9): 091404. DOI: 10.11883/bzycj-2023-0068.
HE L L, GUO H, CHEN X W, et al. Influence of structural deformation on the deflection of penetrator into concrete target with deep penetration [J]. Explosion and Shock Waves, 2023, 43(9): 091404. DOI: 10.11883/bzycj-2023-0068.
|
[18] |
WARREN T L, HANCHAK S J, POORMON K L. Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations [J]. International Journal of Impact Engineering, 2004, 30(10): 1307–1331. DOI: 10.1016/j.ijimpeng.2003.09.047.
|
[19] |
马爱娥, 黄风雷, 初哲, 等. 弹体攻角侵彻混凝土数值模拟 [J]. 爆炸与冲击, 2008, 28(1): 33–37. DOI: 10.11883/1001-1455(2008)01-0033-05.
MA A E, HUANG F L, CHU Z, et al. Numerical simulation on yawed penetration into concrete [J]. Explosion and Shock Waves, 2008, 28(1): 33–37. DOI: 10.11883/1001-1455(2008)01-0033-05.
|
[20] |
BERNARD R S, CREIGHTON D C. Projectile penetration in soil and rock: analysis for non-normal impact: SL-79-15 [R]. USA: Vicksbury: Army Engineer Waterways Experiment Station Strutures Laboratory, 1979.
|
[21] |
吕中杰, 徐钰巍, 黄风雷. 弹体斜侵彻混凝土过程中的方向偏转 [J]. 兵工学报, 2009, 30(S2): 301–304.
LU Z J, XU Y W, HUANG F L. Transverse deflection of projectile obliquely penetrating into concrete [J]. Acta Armamentarii, 2009, 30(S2): 301–304.
|
[22] |
王可慧, 宁建国, 李志康, 等. 高速弹体非正侵彻混凝土靶的弹道偏转实验研究 [J]. 高压物理学报, 2013, 27(4): 561–566. DOI: 10.11858/gywlxb.2013.04.015.
WANG K H, NING J G, LI Z K, et al. Ballistic trajectory of high-velocity projectile obliquely penetrating concrete target [J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 561–566. DOI: 10.11858/gywlxb.2013.04.015.
|
[23] |
武海军, 黄风雷, 王一楠. 高速弹体非正侵彻混凝土试验研究 [C]//第八届全国爆炸力学学术会议论文集. 吉安: 中国力学学会爆炸力学专业委员会, 2007: 488–494.
|
[24] |
康海峰, 代廷静, 沈培辉, 等. 弹体形状对侵彻弹道的影响分析 [J]. 弹箭与制导学报, 2012, 32(2): 73–76. DOI: 10.3969/j.issn.1673-9728.2012.02.020.
KANG H F, DAI T J, SHEN P H, et al. The analysis of the influence of projectile’s shape on penetration trajectory [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(2): 73–76. DOI: 10.3969/j.issn.1673-9728.2012.02.020.
|
[25] |
郭松林, 高世桥, 李泽章, 等. 弹引系统攻角侵彻混凝土仿真与试验研究 [J]. 兵器装备工程学报, 2022, 43(1): 135–139,205. DOI: 10.11809/bqzbgcxb2022.01.021.
GUO S L, GAO S Q, LI Z Z, et al. Experiment and simulation of projectile obliquely penetrating into concrete target at attack angle [J]. Journal of Ordnance Equipment Engineering, 2022, 43(1): 135–139,205. DOI: 10.11809/bqzbgcxb2022.01.021.
|
[26] |
郭虎, 何丽灵, 陈小伟, 等. 球形颗粒遮弹层对高速侵彻弹体的作用机理 [J]. 爆炸与冲击, 2020, 40(10): 103301. DOI: 10.11883/bzycj-2019-0428.
GUO H, HE L L, CHEN X W, et al. Penetration mechanism of a high-speed projectile into a shelter made of spherical aggregates [J]. Explosion and Shock Waves, 2020, 40(10): 103301. DOI: 10.11883/bzycj-2019-0428.
|
[27] |
SPAWN C M. Field testing of earth penetrators: LA-UR-23-21935 [R]. Los Alamos: Los Alamos National Laboratory, 2023. DOI: 10.2172/1958976.
|
[28] |
HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures [C]//The 14th International Symposium on Ballistic. Quebec, 1993: 591-600.
|
[29] |
任根茂, 吴昊, 方秦, 等. 普通混凝土HJC本构模型参数确定 [J]. 振动与冲击, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.18.002.
REN G M, WU H, FANG Q, et al. Determinations of HJC constitutive model parameters for normal strength concrete [J]. Journal of Vibration and Shock, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.18.002.
|