Citation: | MAO Zhichao, YU Cheng, LI Xiaojie, WANG Xiaohong, YAN Honghao, WANG Yuxin. A study on hypervelocity impact resistance of the Whipple shield with aluminum spherical micro-airbag metastructure using material point method[J]. Explosion And Shock Waves, 2025, 45(7): 071424. doi: 10.11883/bzycj-2024-0265 |
[1] |
ANZ-MEADOR P D. Orbital debris quarterly news [EB/OL]. https://orbitaldebris.jsc.nasa.gov/quarterly-news/#.
|
[2] |
SINGH P K, KUMAR M. Protection of Whipple shield against hypervelocity impact of space debris: a review [J]. Sādhanā, 2024, 49(2): 105. DOI: 10.1007/s12046-024-02467-2.
|
[3] |
PAI A, DIVAKARAN R, ANAND S, et al. Advances in the Whipple shield design and development: a brief review [J]. Journal of Dynamic Behavior of Materials, 2022, 8(1): 20–38. DOI: 10.1007/s40870-021-00314-7.
|
[4] |
CHA J H, KIM Y, KUMAR S K S, et al. Ultra-high-molecular-weight polyethylene as a hypervelocity impact shielding material for space structures [J]. Acta Astronautica, 2020, 168: 182–190. DOI: 10.1016/j.actaastro.2019.12.008.
|
[5] |
SCHONBERG W P, TULLOS R J. Spacecraft wall design for increased protection against penetration by orbital debris impacts [J]. AIAA Journal, 1991, 29(12): 2207–2214. DOI: 10.2514/3.10861.
|
[6] |
TANG E L, ZHAO L L, HAN Y F, et al. Research on the electromagnetic propagating characteristics of hypervelocity impact on the target with aperture and different potential conditions [J]. Aerospace Science and Technology, 2020, 107: 106274. DOI: 10.1016/j.ast.2020.106274.
|
[7] |
MEJÍA-KAISER M I. Space debris mitigation guidelines [Z]. Brill Nijhoff, 2020: 381–389. DOI: 10.116/9789004411029_014.
|
[8] |
CHRISTIANSEN E L. Meteoroid/debris shielding: TP-2003-210788 [R]. Washington: National Aeronautics and Space Administration, 2003.
|
[9] |
WEN X Z, HUANG J, KE F W, et al. Preliminary study on shielding performance of debris shield with the rear wall combining light materials and an aluminum plate [J]. International Journal of Impact Engineering, 2019, 124: 31–36. DOI: 10.1016/j.ijimpeng.2018.10.006.
|
[10] |
HE Q G, CHEN X W. Simulation method of debris cloud from fiber-reinforced composite shield under hypervelocity impact [J]. Acta Astronautica, 2023, 204: 402–417. DOI: 10.1016/j.actaastro.2023.01.008.
|
[11] |
WHIPPLE F L. Meteorites and space travel [J]. The Astronomical Journal, 1947, 52: 131. DOI: 10.1086/106009.
|
[12] |
ZHANG X T, LIU T, LI X G, et al. Hypervelocity impact performance of aluminum egg-box panel enhanced Whipple shield [J]. Acta Astronautica, 2016, 119: 48–59. DOI: 10.1016/j.actaastro.2015.10.013.
|
[13] |
WEN K, CHEN X W, LU Y G. Research and development on hypervelocity impact protection using Whipple shield: an overview [J]. Defence Technology, 2021, 17(6): 1864–1886. DOI: 10.1016/j.dt.2020.11.005.
|
[14] |
SLIMANE S A, SLIMANE A, GUELAILIA A, et al. Hypervelocity impact on honeycomb structure reinforced with bi-layer ceramic/aluminum facesheets used for spacecraft shielding [J]. Mechanics of Advanced Materials and Structures, 2022, 29(25): 4487–4505. DOI: 10.1080/15376494.2021.1931991.
|
[15] |
REN S Y, LONG R R, ZHANG Q M, et al. The hypervelocity impact resistance behaviors of NbC/Al2024 ceramic-metal composites [J]. International Journal of Impact Engineering, 2021, 148: 103759. DOI: 10.1016/j.ijimpeng.2020.103759.
|
[16] |
RICHARDSON A J, SANDERS J P. Development of dual bumper wall construction for advanced spacecraft [J]. Journal of Spacecraft and Rockets, 1972, 9(6): 448–451. DOI: 10.2514/3.61709.
|
[17] |
SENNETT R E, LATHROP B L. Effects of hypervelocity impact on honeycomb structures [J]. Journal of Spacecraft and Rockets, 1968, 5(12): 1496–1497. DOI: 10.2514/3.29514.
|
[18] |
WEN X Z, HUANG J, KE F W, et al. Debris dispersion effect in N-shape configuration [J]. Acta Astronautica, 2014, 104(1): 173–178. DOI: 10.1016/j.actaastro.2014.06.037.
|
[19] |
KUMAR S K S, KIM Y, CHA J H, et al. Hybrid interspaced and free-boundary aramid fabric back bumper for hypervelocity impact shielding system [J]. International Journal of Impact Engineering, 2023, 171: 104377. DOI: 10.1016/j.ijimpeng.2022.104377.
|
[20] |
KHODAEI M, FARAHANI S M, HAGHIGHI-YAZDI M. Numerical investigation of high velocity impact on foam-filled honeycomb structures including foam fracture model [J]. Mechanics of Advanced Materials and Structures, 2022, 29(5): 748–760. DOI: 10.1080/15376494.2020.1793239.
|
[21] |
WARREN J, COLE M, OFFENBERGER S, et al. Hypervelocity impacts on honeycomb core sandwich panels filled with shear thickening fluid [J]. International Journal of Impact Engineering, 2021, 150: 103803. DOI: 10.1016/j.ijimpeng.2020.103803.
|
[22] |
MOONEN J, RYAN S, KORTMANN L, et al. Evaluating UHMWPE-stuffed aluminium foam sandwich panels for protecting spacecraft against micrometeoroid and orbital debris impact [J]. International Journal of Impact Engineering, 2023, 180: 104668. DOI: 10.1016/j.ijimpeng.2023.104668.
|
[23] |
CHRISTIANSEN E L, CREWS J L, WILLIAMSEN J E, et al. Enhanced meteoroid and orbital debris shielding [J]. International Journal of Impact Engineering, 1995, 17(1/2/3): 217–228. DOI: 10.1016/0734-743X(95)99848-L.
|
[24] |
BUSLOV E P, KOMAROV I S, SELIVANOV V V, et al. Protection of inflatable modules of orbital stations against impacts of particles of space debris [J]. Acta Astronautica, 2019, 163: 54–61. DOI: 10.1016/j.actaastro.2019.04.046.
|
[25] |
KIM Y, CHOI C, KUMAR S K S, et al. Behavior of dragon skin flexible metal bumper under hypervelocity impact [J]. International Journal of Impact Engineering, 2019, 125: 13–26. DOI: 10.1016/j.ijimpeng.2018.10.005.
|
[26] |
REN S Y, ZHANG Q M, GAO F, et al. Impact resistance mechanism of reactive material bumper for spacecraft Whipple shield: experiments and numerical simulations [J]. Aerospace Science and Technology, 2022, 126: 107646. DOI: 10.1016/j.ast.2022.107646.
|
[27] |
SMIRNOV N N, KISELEV A B, SMIRNOVA M N, et al. Space traffic hazards from orbital debris mitigation strategies [J]. Acta Astronautica, 2015, 109: 144–152. DOI: 10.1016/j.actaastro.2014.09.014.
|
[28] |
ZHANG P L, XU K B, LI M, et al. Study of the shielding performance of a Whipple shield enhanced by Ti-Al-nylon impedance-graded materials [J]. International Journal of Impact Engineering, 2019, 124: 23–30. DOI: 10.1016/j.ijimpeng.2018.08.005.
|
[29] |
ZHANG P L, GONG Z Z, TIAN D B, et al. Comparison of shielding performance of Al/Mg impedance-graded-material-enhanced and aluminum Whipple shields [J]. International Journal of Impact Engineering, 2019, 126: 101–108. DOI: 10.1016/j.ijimpeng.2018.12.007.
|
[30] |
WU Q, ZHANG Q M, LONG R R, et al. Potential space debris shield structure using impact-initiated energetic materials composed of polytetrafluoroethylene and aluminum [J]. Applied Physics Letters, 2016, 108(10): 101903. DOI: 10.1063/1.4943584.
|
[31] |
REN S Y, ZHANG Q M, WU Q, et al. A debris cloud model for hypervelocity impact of the spherical projectile on reactive material bumper composed of polytetrafluoroethylene and aluminum [J]. International Journal of Impact Engineering, 2019, 130: 124–137. DOI: 10.1016/j.ijimpeng.2019.04.011.
|
[32] |
时圣波, 王韧之, 唐佳宾, 等. 复合点阵结构强爆炸冲击载荷下的损伤机理与动态响应特性 [J]. 爆炸与冲击, 2023, 43(6): 062201. DOI: 10.11883/bzycj-2022-0430.
SHI S B, WANG R Z, TANG J B, et al. Failure mechanism and dynamic response of a composite lattice structure under intense explosion loadings [J]. Explosion and Shock Waves, 2023, 43(6): 062201. DOI: 10.11883/bzycj-2022-0430.
|
[33] |
SMIRNOV N N, KISELEV A B, ZAKHAROV P P. Numerical simulation of the hypervelocity impact of the ball and the spherical containment in three-material statement [J]. Acta Astronautica, 2020, 171: 215–224. DOI: 10.1016/j.actaastro.2020.03.010.
|
[34] |
LU G X, YU T X. References [M]//LU G X, YU T X. Energy Absorption of Structures and Materials. Amsterdam: Elsevier, 2003: 385–400. DOI: 10.1533/9781855738584.references.
|
[35] |
SHEN J H, LU G X, ZHAO L M, et al. Response of curved sandwich panels subjected to blast loading [J]. Journal of Performance of Constructed Facilities, 2011, 25(5): 382–393. DOI: 10.1061/(ASCE)CF.1943-5509.0000234.
|
[36] |
JING L, WANG Z H, ZHAO L M. Dynamic response of cylindrical sandwich shells with metallic foam cores under blast loading numerical simulations [J]. Composite Structures, 2013, 99: 213–223. DOI: 10.1016/j.compstruct.2012.12.013.
|
[37] |
GUO H Y, YUAN H, ZHANG J X, et al. Review of sandwich structures under impact loadings: experimental, numerical and theoretical analysis [J]. Thin-Walled Structures, 2024, 196: 111541. DOI: 10.1016/j.tws.2023.111541.
|
[38] |
YORK II A R, SULSKY D, SCHREYER H L. Fluid-membrane interaction based on the material point method [J]. International Journal for Numerical Methods in Engineering, 2000, 48(6): 901–924. DOI: 10.1002/(SICI)1097-0207(20000630)48:63.0.CO;2-T.
|
[39] |
迟润强, 庞宝君, 何茂坚, 等. 球形弹丸超高速正撞击薄板破碎状态实验研究 [J]. 爆炸与冲击, 2009, 29(3): 231–236. DOI: 10.3321/j.issn:1001-1455.2009.03.002.
CHI R Q, PANG B J, HE M J, et al. Experimental investigation for deformation and fragmentation of spheres penetrating sheets at hyper-velocity [J]. Explosion and Shock Waves, 2009, 29(3): 231–236. DOI: 10.3321/j.issn:1001-1455.2009.03.002.
|
[40] |
管公顺, 张伟, 庞宝君, 等. 铝球弹丸高速正撞击薄铝板穿孔研究 [J]. 高压物理学报, 2005, 19(2): 132–138. DOI: 10.11858/gywlxb.2005.02.006.
GUAN G S, ZHANG W, PANG B J, et al. A study of penetration hole diameter in thin al-plate by hypervelocity impact of al-spheres [J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 132–138. DOI: 10.11858/gywlxb.2005.02.006.
|
[41] |
HE Q G, CHEN X W, CHEN J F. Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud [J]. Acta Astronautica, 2020, 175: 99–117. DOI: 10.1016/j.actaastro.2020.05.056.
|