• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Volume 45 Issue 7
Jul.  2025
Turn off MathJax
Article Contents
MAO Zhichao, YU Cheng, LI Xiaojie, WANG Xiaohong, YAN Honghao, WANG Yuxin. A study on hypervelocity impact resistance of the Whipple shield with aluminum spherical micro-airbag metastructure using material point method[J]. Explosion And Shock Waves, 2025, 45(7): 071424. doi: 10.11883/bzycj-2024-0265
Citation: MAO Zhichao, YU Cheng, LI Xiaojie, WANG Xiaohong, YAN Honghao, WANG Yuxin. A study on hypervelocity impact resistance of the Whipple shield with aluminum spherical micro-airbag metastructure using material point method[J]. Explosion And Shock Waves, 2025, 45(7): 071424. doi: 10.11883/bzycj-2024-0265

A study on hypervelocity impact resistance of the Whipple shield with aluminum spherical micro-airbag metastructure using material point method

doi: 10.11883/bzycj-2024-0265
  • Received Date: 2024-08-11
  • Rev Recd Date: 2025-04-21
  • Available Online: 2025-04-24
  • Publish Date: 2025-07-05
  • To enhance the hypervelocity impact protection performance of Whipple shields against high-speed space debris, an aluminum spherical micro-airbag array metastructure was designed without incorporating additional energy-absorbing materials such as porous materials or carbon fibers. This metastructure was fabricated using 3D printing technology. The protective performance of the Whipple shield was investigated and analyzed by constructing a numerical model of a spherical projectile with an initial velocity of 7.5 km/s impacting both the single-layer aluminum plate and the aluminum spherical micro-airbag metastructure. The finite element method is often inadequate for accurately calculating large plastic deformations and fracture damage problems, particularly when mesh distortions are involved. Therefore, the material point method (MPM) was employed in this study to simulate hypervelocity impact scenarios. After verifying the reliability of the MPM calculations through experiments, a three-dimensional numerical simulation of hypervelocity impacts on the Whipple shield was conducted. The mechanism of energy absorption and dissipation by the aluminum spherical micro-airbag metastructure was elucidated through a comparative analysis of the perforation size, debris cloud morphology, and key parameters such as velocity, momentum, energy, and temperature with those of a single-layer aluminum plate subjected to hypervelocity impact. The results indicate that the Whipple shield with the aluminum spherical micro-airbag metastructure reduces the axial kinetic energy of the projectile by 300 J more than the single-layer aluminum plate. In addition, the maximum expansion radius of the debris cloud is 32.2 mm larger than that of the single-layer aluminum plate. These findings demonstrate that the Whipple shield with the aluminum spherical micro-airbag metastructure significantly enhances protection against hypervelocity impacts from space debris. Moreover, when compared with relevant experimental data, the material point method simulation proves to be an effective computational tool for researching and developing new types of Whipple shields.
  • loading
  • [1]
    ANZ-MEADOR P D. Orbital debris quarterly news [EB/OL]. https://orbitaldebris.jsc.nasa.gov/quarterly-news/#.
    [2]
    SINGH P K, KUMAR M. Protection of Whipple shield against hypervelocity impact of space debris: a review [J]. Sādhanā, 2024, 49(2): 105. DOI: 10.1007/s12046-024-02467-2.
    [3]
    PAI A, DIVAKARAN R, ANAND S, et al. Advances in the Whipple shield design and development: a brief review [J]. Journal of Dynamic Behavior of Materials, 2022, 8(1): 20–38. DOI: 10.1007/s40870-021-00314-7.
    [4]
    CHA J H, KIM Y, KUMAR S K S, et al. Ultra-high-molecular-weight polyethylene as a hypervelocity impact shielding material for space structures [J]. Acta Astronautica, 2020, 168: 182–190. DOI: 10.1016/j.actaastro.2019.12.008.
    [5]
    SCHONBERG W P, TULLOS R J. Spacecraft wall design for increased protection against penetration by orbital debris impacts [J]. AIAA Journal, 1991, 29(12): 2207–2214. DOI: 10.2514/3.10861.
    [6]
    TANG E L, ZHAO L L, HAN Y F, et al. Research on the electromagnetic propagating characteristics of hypervelocity impact on the target with aperture and different potential conditions [J]. Aerospace Science and Technology, 2020, 107: 106274. DOI: 10.1016/j.ast.2020.106274.
    [7]
    MEJÍA-KAISER M I. Space debris mitigation guidelines [Z]. Brill Nijhoff, 2020: 381–389. DOI: 10.116/9789004411029_014.
    [8]
    CHRISTIANSEN E L. Meteoroid/debris shielding: TP-2003-210788 [R]. Washington: National Aeronautics and Space Administration, 2003.
    [9]
    WEN X Z, HUANG J, KE F W, et al. Preliminary study on shielding performance of debris shield with the rear wall combining light materials and an aluminum plate [J]. International Journal of Impact Engineering, 2019, 124: 31–36. DOI: 10.1016/j.ijimpeng.2018.10.006.
    [10]
    HE Q G, CHEN X W. Simulation method of debris cloud from fiber-reinforced composite shield under hypervelocity impact [J]. Acta Astronautica, 2023, 204: 402–417. DOI: 10.1016/j.actaastro.2023.01.008.
    [11]
    WHIPPLE F L. Meteorites and space travel [J]. The Astronomical Journal, 1947, 52: 131. DOI: 10.1086/106009.
    [12]
    ZHANG X T, LIU T, LI X G, et al. Hypervelocity impact performance of aluminum egg-box panel enhanced Whipple shield [J]. Acta Astronautica, 2016, 119: 48–59. DOI: 10.1016/j.actaastro.2015.10.013.
    [13]
    WEN K, CHEN X W, LU Y G. Research and development on hypervelocity impact protection using Whipple shield: an overview [J]. Defence Technology, 2021, 17(6): 1864–1886. DOI: 10.1016/j.dt.2020.11.005.
    [14]
    SLIMANE S A, SLIMANE A, GUELAILIA A, et al. Hypervelocity impact on honeycomb structure reinforced with bi-layer ceramic/aluminum facesheets used for spacecraft shielding [J]. Mechanics of Advanced Materials and Structures, 2022, 29(25): 4487–4505. DOI: 10.1080/15376494.2021.1931991.
    [15]
    REN S Y, LONG R R, ZHANG Q M, et al. The hypervelocity impact resistance behaviors of NbC/Al2024 ceramic-metal composites [J]. International Journal of Impact Engineering, 2021, 148: 103759. DOI: 10.1016/j.ijimpeng.2020.103759.
    [16]
    RICHARDSON A J, SANDERS J P. Development of dual bumper wall construction for advanced spacecraft [J]. Journal of Spacecraft and Rockets, 1972, 9(6): 448–451. DOI: 10.2514/3.61709.
    [17]
    SENNETT R E, LATHROP B L. Effects of hypervelocity impact on honeycomb structures [J]. Journal of Spacecraft and Rockets, 1968, 5(12): 1496–1497. DOI: 10.2514/3.29514.
    [18]
    WEN X Z, HUANG J, KE F W, et al. Debris dispersion effect in N-shape configuration [J]. Acta Astronautica, 2014, 104(1): 173–178. DOI: 10.1016/j.actaastro.2014.06.037.
    [19]
    KUMAR S K S, KIM Y, CHA J H, et al. Hybrid interspaced and free-boundary aramid fabric back bumper for hypervelocity impact shielding system [J]. International Journal of Impact Engineering, 2023, 171: 104377. DOI: 10.1016/j.ijimpeng.2022.104377.
    [20]
    KHODAEI M, FARAHANI S M, HAGHIGHI-YAZDI M. Numerical investigation of high velocity impact on foam-filled honeycomb structures including foam fracture model [J]. Mechanics of Advanced Materials and Structures, 2022, 29(5): 748–760. DOI: 10.1080/15376494.2020.1793239.
    [21]
    WARREN J, COLE M, OFFENBERGER S, et al. Hypervelocity impacts on honeycomb core sandwich panels filled with shear thickening fluid [J]. International Journal of Impact Engineering, 2021, 150: 103803. DOI: 10.1016/j.ijimpeng.2020.103803.
    [22]
    MOONEN J, RYAN S, KORTMANN L, et al. Evaluating UHMWPE-stuffed aluminium foam sandwich panels for protecting spacecraft against micrometeoroid and orbital debris impact [J]. International Journal of Impact Engineering, 2023, 180: 104668. DOI: 10.1016/j.ijimpeng.2023.104668.
    [23]
    CHRISTIANSEN E L, CREWS J L, WILLIAMSEN J E, et al. Enhanced meteoroid and orbital debris shielding [J]. International Journal of Impact Engineering, 1995, 17(1/2/3): 217–228. DOI: 10.1016/0734-743X(95)99848-L.
    [24]
    BUSLOV E P, KOMAROV I S, SELIVANOV V V, et al. Protection of inflatable modules of orbital stations against impacts of particles of space debris [J]. Acta Astronautica, 2019, 163: 54–61. DOI: 10.1016/j.actaastro.2019.04.046.
    [25]
    KIM Y, CHOI C, KUMAR S K S, et al. Behavior of dragon skin flexible metal bumper under hypervelocity impact [J]. International Journal of Impact Engineering, 2019, 125: 13–26. DOI: 10.1016/j.ijimpeng.2018.10.005.
    [26]
    REN S Y, ZHANG Q M, GAO F, et al. Impact resistance mechanism of reactive material bumper for spacecraft Whipple shield: experiments and numerical simulations [J]. Aerospace Science and Technology, 2022, 126: 107646. DOI: 10.1016/j.ast.2022.107646.
    [27]
    SMIRNOV N N, KISELEV A B, SMIRNOVA M N, et al. Space traffic hazards from orbital debris mitigation strategies [J]. Acta Astronautica, 2015, 109: 144–152. DOI: 10.1016/j.actaastro.2014.09.014.
    [28]
    ZHANG P L, XU K B, LI M, et al. Study of the shielding performance of a Whipple shield enhanced by Ti-Al-nylon impedance-graded materials [J]. International Journal of Impact Engineering, 2019, 124: 23–30. DOI: 10.1016/j.ijimpeng.2018.08.005.
    [29]
    ZHANG P L, GONG Z Z, TIAN D B, et al. Comparison of shielding performance of Al/Mg impedance-graded-material-enhanced and aluminum Whipple shields [J]. International Journal of Impact Engineering, 2019, 126: 101–108. DOI: 10.1016/j.ijimpeng.2018.12.007.
    [30]
    WU Q, ZHANG Q M, LONG R R, et al. Potential space debris shield structure using impact-initiated energetic materials composed of polytetrafluoroethylene and aluminum [J]. Applied Physics Letters, 2016, 108(10): 101903. DOI: 10.1063/1.4943584.
    [31]
    REN S Y, ZHANG Q M, WU Q, et al. A debris cloud model for hypervelocity impact of the spherical projectile on reactive material bumper composed of polytetrafluoroethylene and aluminum [J]. International Journal of Impact Engineering, 2019, 130: 124–137. DOI: 10.1016/j.ijimpeng.2019.04.011.
    [32]
    时圣波, 王韧之, 唐佳宾, 等. 复合点阵结构强爆炸冲击载荷下的损伤机理与动态响应特性 [J]. 爆炸与冲击, 2023, 43(6): 062201. DOI: 10.11883/bzycj-2022-0430.

    SHI S B, WANG R Z, TANG J B, et al. Failure mechanism and dynamic response of a composite lattice structure under intense explosion loadings [J]. Explosion and Shock Waves, 2023, 43(6): 062201. DOI: 10.11883/bzycj-2022-0430.
    [33]
    SMIRNOV N N, KISELEV A B, ZAKHAROV P P. Numerical simulation of the hypervelocity impact of the ball and the spherical containment in three-material statement [J]. Acta Astronautica, 2020, 171: 215–224. DOI: 10.1016/j.actaastro.2020.03.010.
    [34]
    LU G X, YU T X. References [M]//LU G X, YU T X. Energy Absorption of Structures and Materials. Amsterdam: Elsevier, 2003: 385–400. DOI: 10.1533/9781855738584.references.
    [35]
    SHEN J H, LU G X, ZHAO L M, et al. Response of curved sandwich panels subjected to blast loading [J]. Journal of Performance of Constructed Facilities, 2011, 25(5): 382–393. DOI: 10.1061/(ASCE)CF.1943-5509.0000234.
    [36]
    JING L, WANG Z H, ZHAO L M. Dynamic response of cylindrical sandwich shells with metallic foam cores under blast loading numerical simulations [J]. Composite Structures, 2013, 99: 213–223. DOI: 10.1016/j.compstruct.2012.12.013.
    [37]
    GUO H Y, YUAN H, ZHANG J X, et al. Review of sandwich structures under impact loadings: experimental, numerical and theoretical analysis [J]. Thin-Walled Structures, 2024, 196: 111541. DOI: 10.1016/j.tws.2023.111541.
    [38]
    YORK II A R, SULSKY D, SCHREYER H L. Fluid-membrane interaction based on the material point method [J]. International Journal for Numerical Methods in Engineering, 2000, 48(6): 901–924. DOI: 10.1002/(SICI)1097-0207(20000630)48:63.0.CO;2-T.
    [39]
    迟润强, 庞宝君, 何茂坚, 等. 球形弹丸超高速正撞击薄板破碎状态实验研究 [J]. 爆炸与冲击, 2009, 29(3): 231–236. DOI: 10.3321/j.issn:1001-1455.2009.03.002.

    CHI R Q, PANG B J, HE M J, et al. Experimental investigation for deformation and fragmentation of spheres penetrating sheets at hyper-velocity [J]. Explosion and Shock Waves, 2009, 29(3): 231–236. DOI: 10.3321/j.issn:1001-1455.2009.03.002.
    [40]
    管公顺, 张伟, 庞宝君, 等. 铝球弹丸高速正撞击薄铝板穿孔研究 [J]. 高压物理学报, 2005, 19(2): 132–138. DOI: 10.11858/gywlxb.2005.02.006.

    GUAN G S, ZHANG W, PANG B J, et al. A study of penetration hole diameter in thin al-plate by hypervelocity impact of al-spheres [J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 132–138. DOI: 10.11858/gywlxb.2005.02.006.
    [41]
    HE Q G, CHEN X W, CHEN J F. Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud [J]. Acta Astronautica, 2020, 175: 99–117. DOI: 10.1016/j.actaastro.2020.05.056.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(7)

    Article Metrics

    Article views (169) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return