• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Volume 45 Issue 11
Nov.  2025
Turn off MathJax
Article Contents
HU Qiushi, HE Yang, ZHONG Suyang, FU Hua, LIAO Shenfei. Simulation experiment on ignition response of fragmented explosive under gap extrusion loading[J]. Explosion And Shock Waves, 2025, 45(11): 112301. doi: 10.11883/bzycj-2024-0269
Citation: HU Qiushi, HE Yang, ZHONG Suyang, FU Hua, LIAO Shenfei. Simulation experiment on ignition response of fragmented explosive under gap extrusion loading[J]. Explosion And Shock Waves, 2025, 45(11): 112301. doi: 10.11883/bzycj-2024-0269

Simulation experiment on ignition response of fragmented explosive under gap extrusion loading

doi: 10.11883/bzycj-2024-0269
  • Received Date: 2024-08-11
  • Rev Recd Date: 2024-12-13
  • Available Online: 2024-12-17
  • Publish Date: 2025-11-05
  • Modeling powder is used to simulate the highly fragmented state of pressed explosives resulting from collisions, and the gap extrusion ignition behavior of PBX modeling powder is studied. Experiments were designed based on the way of projectile impact method. To ensure that no flow space exists except the designed gap, the surface of the sample was covered with cushion and coated with grease for sealing. The movement and reaction of molding powder squeezing into the gap were recorded by high-speed photography. By changing the ratio of gap area to sample cross-sectional area, the influence of compaction on ignition was studied. The results show that in the absence of grease seal, PBX molding powder undergoes particle crushing and compaction, and then the compacted molding powder is extruded from the clearance near the cushion, and ignition occurs in the extrusion process. The ignition position is at the interface between explosive and cushion. In the case of grease seal, PBX molding powder does not ignite for a period of time after compaction. When the indenter moves halfway, a wedge-shaped slip zone is formed, and a slip-dead zone interface could be seen in high-speed camera photos. Then the deformation mode evolves from single-wedge slip zone to double-wedge slip zone, and the shear effect of slip-dead zone interface does not cause ignition. At the later stage of loading, the indenter travels close to the gap surface, and the wedge-shaped slip zone disappears. Before and after the collision between the indenter and the gap, the explosive ignites once in each instance. Compaction effect has an important influence on ignition behavior. After compaction, the threshold value of ignition speed is obviously reduced, with the impact speed required to cause ignition being merely 4.5 m/s.
  • loading
  • [1]
    刘晨. 基于数字图像相关方法的PBX断裂行为研究 [D]. 绵阳: 中国工程物理研究院, 2016.

    LIU C. Study on fracture behavior of PBX based on digital image correlation method [D]. Mianyang: China Academy of Engineering Physics, 2016.
    [2]
    巩天元. 冲击载荷下PBX损伤与断裂行为研究 [D]. 太原: 中北大学, 2023. DOI: 10.27470/d.cnki.ghbgc.2023.001323.

    GONG T Y. Research on the damage and fracture behavior of PBX under impact load [D]. Taiyuan: North University of China, 2023. DOI: 10.27470/d.cnki.ghbgc.2023.001323.
    [3]
    杨存丰, 田勇, 张伟斌, 等. 基于X射线显微CT的PBX热冲击损伤特征 [J]. 含能材料, 2022, 30(9): 959–965. DOI: 10.11943/CJEM2021247.

    YANG C F, TIAN Y, ZHANG W B, et al. Thermal shock damage characteristics of polymer bonded explosive based on X-ray micro-computed tomography [J]. Chinese Journal of Energetic Materials, 2022, 30(9): 959–965. DOI: 10.11943/CJEM2021247.
    [4]
    李俊玲. PBX炸药装药的力学性能及损伤破坏研究 [D]. 长沙: 国防科学技术大学, 2012.

    LI J L. Study on PBX’s mechanical behavior and damage feature [D]. Changsha: National University of Defense Technology, 2012.
    [5]
    高霞, 赵天波, 郑保辉, 等. 不同壁材石蜡微胶囊与HTPB型黏结剂的表界面研究 [J]. 火炸药学报, 2020, 43(2): 161–166. DOI: 10.14077/j.issn.1007-7812.201905012.

    GAO X, ZHAO T B, ZHENG B H, et al. Surface and interface study on the MePWs with different shells and HTPB-type binder [J]. Chinese Journal of Explosives and Propellants, 2020, 43(2): 161–166. DOI: 10.14077/j.issn.1007-7812.201905012.
    [6]
    陈世雄, 钱华, 芮久后, 等. 高品质RDX的抗压性能研究 [J]. 爆破器材, 2023, 52(6): 1–8. DOI: 10.3969/j.issn.1001-8352.2023.06.001.

    CHEN S X, QIAN H, RUI J H, et al. Research on the compressive performance of H-RDX [J]. Explosive Materials, 2023, 52(6): 1–8. DOI: 10.3969/j.issn.1001-8352.2023.06.001.
    [7]
    张催. 基于CT成像的炸药造型颗粒集特征参量表征方法: ZWCF-2021-050 [R]. 绵阳: 中国工程物理研究院化工材料研究所, 2022.

    ZHANG C. Characterization method of characteristic parameters of explosive modeling particle set based on CT imaging: ZWCF-2021-050 [R]. Mianyang: Institute of Chemical Materials, China Academy of Engineering Physics, 2022.
    [8]
    杨昆, 吴艳青, 金朋刚, 等. 典型压装与浇注PBX炸药缝隙挤压损伤-点火响应 [J]. 含能材料, 2020, 28(10): 975–983. DOI: 10.11943/CJEM2020170.

    YANG K, WU Y Q, JIN P G, et al. Damage-ignition simulation for typical pressed and casted PBX under crack-extruded loading [J]. Chinese Journal of Energetic Materials, 2020, 28(10): 975–983. DOI: 10.11943/CJEM2020170.
    [9]
    YANG K, DONG L Y, WU Y Q. Viscous shear flow and heating of impact-extruded composite energetic materials [J]. International Journal of Mechanical Sciences, 2023, 258: 108588. DOI: 10.1016/j.ijmecsci.2023.108588.
    [10]
    陈鹏, 屈可朋, 李亮亮, 等. PBX炸药剪切流动点火性能的实验研究 [J]. 火炸药学报, 2020, 43(1): 69–73, 80. DOI: 10.14077/j.issn.1007-7812.201901003.

    CHEN P, QU K P, LI L L, et al. Experimental study on shear-flow ignition performance of PBX explosive [J]. Chinese Journal of Explosives and Propellants, 2020, 43(1): 69–73, 80. DOI: 10.14077/j.issn.1007-7812.201901003.
    [11]
    胡秋实, 尚海林, 吴兆奎, 等. PBX炸药缝隙挤压加载下的破裂模式及点火响应 [J]. 兵工学报, 2024, 45(9): 3135–3146. DOI: 10.12382/bgxb.2023.0809.

    HU Q S, SHANG H L, WU Z K, et al. Fracture mode and ignition response of PBX explosives under crack extrusion loading [J]. Acta Armamentarii, 2024, 45(9): 3135–3146. DOI: 10.12382/bgxb.2023.0809.
    [12]
    董军, 王晶禹, 梁磊, 等. LLM-105/EPDM造型粉的制备及性能 [J]. 火炸药学报, 2009, 32(5): 14–17. DOI: 10.3969/j.issn.1007-7812.2009.05.005.

    DONG J, WANG J Y, LIANG L, et al. Preparation and properties of LLM-105/EPDM molding powders [J]. Chinese Journal of Explosives and Propellants, 2009, 32(5): 14–17. DOI: 10.3969/j.issn.1007-7812.2009.05.005.
    [13]
    牛磊, 曹少庭, 金大勇, 等. 含α-AlH3的HMX基凝聚相炸药的安全性和爆轰性能 [J]. 含能材料, 2021, 29(10): 957–963. DOI: 10.11943/CJEM2021079.

    NIU L, CAO S T, JIN D Y, et al. Safety and detonation performance of HMX-based condensed phase explosives containing α-AlH3 [J]. Chinese Journal of Energetic Materials, 2021, 29(10): 957–963. DOI: 10.11943/CJEM2021079.
    [14]
    刘意, 朱瑞, 时嘉辉, 等. 液滴微流控技术制备亚微米级HNS基PBX复合微球 [J]. 含能材料, 2023, 31(2): 121–129. DOI: 10.11943/CJEM2022184.

    LIU Y, ZHU R, SHI J H, et al. Preparation of submicron HNS-based PBX composite microspheres by droplet microfluidics [J]. Chinese Journal of Energetic Materials, 2023, 31(2): 121–129. DOI: 10.11943/CJEM2022184.
    [15]
    朱玉宇, 霍宏彪, 王杰超, 等. NC/F2602/RDX复合微球悬浮组装成型及其性能研究 [J]. 火工品, 2023(1): 58–62. DOI: 10.3969/j.issn.1003-1480.2023.01.012.

    ZHU Y Y, HUO H B, WANG J C, et al. The suspension assembly and properties of NC/F2602/RDX composite microspheres [J]. Initiators and Pyrotechnics, 2023(1): 58–62. DOI: 10.3969/j.issn.1003-1480.2023.01.012.
    [16]
    谢林, 刘迎彬, 范志强, 等. 基于复合压电效应的PVDF传感器测量性能调控 [J]. 高压物理学报, 2023, 37(4): 043401. DOI: 10.11858/gywlxb.20230645.

    XIE L, LIU Y B, FAN Z Q, et al. Measurement performance regulation of PVDF sensor based on composite piezoelectricity [J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 043401. DOI: 10.11858/gywlxb.20230645.
    [17]
    刘昊. 基于光纤干涉降频技术的高速测量系统研究 [D]. 太原: 中北大学, 2023. DOI: 10.27470/d.cnki.ghbgc.2023.001041.

    LIU H. Research on high-speed measurement system based on fiber optic interference frequency reduction technology [D]. Taiyuan: North University of China, 2023. DOI: 10.27470/d.cnki.ghbgc.2023.001041.
    [18]
    王琦, 智小琦, 肖游, 等. 基于UCM模型的B炸药慢烤泄压结构的作用分析 [J]. 爆炸与冲击, 2022, 42(4): 042301. DOI: 10.11883/bzycj-2021-0253.

    WANG Q, ZHI X Q, XIAO Y, et al. Analysis of the effect of a venting structure on slow cookoff of Comp-B based on a universal cookoff model [J]. Explosion and Shock Waves, 2022, 42(4): 042301. DOI: 10.11883/bzycj-2021-0253.
    [19]
    王平, 崔建忠. 金属塑性成形力学 [M]. 北京: 冶金工业出版社, 2006.

    WANG P, CUI J Z. Mechanics of metal plastic forming [M]. Beijing: Metallurgical Industry Press, 2006.
    [20]
    郝鹏程, 冯其京, 洪滔, 等. 钝感炸药点火增长模型的欧拉数值模拟 [J]. 爆炸与冲击, 2012, 32(3): 243–250. DOI: 10.3969/j.issn.1001-1455.2012.03.004.

    HAO P C, FENG Q J, HONG T, et al. Eulerian simulation on insensitive explosives with the ignition-growth reactive model [J]. Explosion and Shock Waves, 2012, 32(3): 243–250. DOI: 10.3969/j.issn.1001-1455.2012.03.004.
    [21]
    孙承纬. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000.

    SUN C W. Applied detonation physics [M]. Beijing: National Defense Industry Press, 2000.
    [22]
    WEN H N, TANG X F, JIN J S, et al. Effect of extrusion ratios on microstructure evolution and strengthening mechanisms of a novel P/M nickel-based superalloy [J]. Materials Science and Engineering: A, 2022, 847: 143356. DOI: 10.1016/j.msea.2022.143356.
    [23]
    NEWHALL K A, DURIAN D J. Projectile-shape dependence of impact craters in loose granular media [J]. Physical Review E, 2003, 68(6): 060301. DOI: 10.1103/PhysRevE.68.060301.
    [24]
    EGAWA K, KATSURAGI H. Bouncing of a projectile impacting a dense potato-starch suspension layer [J]. Physics of Fluids, 2019, 31(5): 053304. DOI: 10.1063/1.5095678.
    [25]
    DINOVITZER H A, LARONCHE A, ALBERT J. Fiber Bragg grating high impact force sensors with adjustable sensitivity and dynamic range [J]. IEEE Sensors Journal, 2019, 19(14): 5670–5679. DOI: 10.1109/JSEN.2019.2907867.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (220) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return