Citation: | HUANG Chenrui, MU Chaomin, LIU Ankun, HUANG Xilong, ZHANG Changhui. Study on dynamic properties and dynamic temperature of concrete under high-speed impact[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0272 |
[1] |
RUIZ G, DE LA ROSA A, ALMEIDA L C, et al. Dynamic mixed-mode fracture in SCC reinforced with steel fibers: an experimental study [J]. International Journal of Impact Engineering, 2019, 129: 101–111. DOI: 10.1016/j.ijimpeng.2019.03.003.
|
[2] |
TÜRKMEN İ, KANTARCI A. Effects of expanded perlite aggregate and different curing conditions on the physical and mechanical properties of self-compacting concrete [J]. Building and Environment, 2007, 42(6): 2378–2383. DOI: 10.1016/j.buildenv.2006.06.002.
|
[3] |
FRAZÃO C, CAMÕES A, BARROS J, et al. Durability of steel fiber reinforced self-compacting concrete [J]. Construction and Building Materials, 2015, 80: 155–166. DOI: 10.1016/j.conbuildmat.2015.01.061.
|
[4] |
SUESCUM-MORALES D, RÍOS J D, DE LA CONCHA A M, et al. Effect of moderate temperatures on compressive strength of ultra-high-performance concrete: A microstructural analysis [J]. Cement and Concrete Research, 2021, 140: 106303. DOI: 10.1016/j.cemconres.2020.106303.
|
[5] |
DATCU S, IBOS L, CANDAU Y, et al. Improvement of building wall surface temperature measurements by infrared thermography [J]. Infrared Physics & Technology, 2005, 46(6): 451–467. DOI: 10.1016/j.infrared.2005.01.001.
|
[6] |
RAMEZANIANPOUR A A, ESMAEILI M, GHAHARI S A, et al. Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers [J]. Construction and Building Materials, 2013, 44: 411–418. DOI: 10.1016/j.conbuildmat.2013.02.076.
|
[7] |
REN G S, GAO X J, ZHANG H Z. Utilization of hybrid sisal and steel fibers to improve elevated temperature resistance of ultra-high performance concrete [J]. Cement and Concrete Composites, 2022, 130: 104555. DOI: 10.1016/j.cemconcomp.2022.104555.
|
[8] |
PARK J J, YOO D Y, KIM S, et al. Benefits of synthetic fibers on the residual mechanical performance of UHPFRC after exposure to ISO standard fire [J]. Cement and Concrete Composites, 2019, 104: 103401. DOI: 10.1016/j.cemconcomp.2019.103401.
|
[9] |
KODUR V K R, CHENG F P, WANG T C, et al. Effect of strength and fiber reinforcement on fire resistance of high-strength concrete columns [J]. Journal of Structural Engineering, 2003, 129(2): 253–259. DOI: 10.1061/(ASCE)0733-9445(2003)129:2(253).
|
[10] |
XU L H, DENG F Q, CHI Y. Nano-mechanical behavior of the interfacial transition zone between steel-polypropylene fiber and cement paste [J]. Construction and Building Materials, 2017, 145: 619–638. DOI: 10.1016/j.conbuildmat.2017.04.035.
|
[11] |
徐礼华, 邓方茜, 徐浩然, 等. 钢-聚丙烯混杂纤维混凝土柱抗震性能试验研究 [J]. 土木工程学报, 2016, 49(1): 3–13. DOI: 10.15951/j.tmgcxb.2016.01.002.
XU L H, DENG F Q, XU H R, et al. On seismic behavior of steel-polypropylene hybrid fiber reinforced concrete columns [J]. China Civil Engineering Journal, 2016, 49(1): 3–13. DOI: 10.15951/j.tmgcxb.2016.01.002.
|
[12] |
王秋维, 梁林, 史庆轩. 混杂钢纤维超高性能混凝土轴拉力学性能及本构模型 [J]. 复合材料学报, 2024, 41(1): 383–394. DOI: 10.13801/j.cnki.fhclxb.20230529.002.
WANG Q W, LIANG L, SHI Q X. Mechanical properties and constitutive model of ultra-high performance concrete with hybrid steel fiber under axial tension [J]. Acta Materiae Compositae Sinica, 2024, 41(1): 383–394. DOI: 10.13801/j.cnki.fhclxb.20230529.002.
|
[13] |
WANG Z H, BAI E L, LIANG L, et al. Effect of ceramic fiber on mechanical properties of concrete with different strength grades and its strengthening and toughening behaviors under impact load [J]. Construction and Building Materials, 2023, 402: 132993. DOI: 10.1016/j.conbuildmat.2023.132993.
|
[14] |
张超峰, 管仲国. 混凝土结构冲击的研究现状 [C]//2021第五届土木工程国际会议论文集. 南京: 上海来溪会务服务有限公司, 2022. DOI: 10.11648/j.sd.20210904.21.
ZHANG C F, GUAN Z G. Research status of impact on concrete structures [C]//Proceedings of the 2021 5th International Conference on Civil Engineering. Nanjing, 2022. DOI: 10.11648/j.sd.20210904.21.
|
[15] |
LI B, CHI Y, XU L H, et al. Experimental investigation on the flexural behavior of steel-polypropylene hybrid fiber reinforced concrete [J]. Construction and Building Materials, 2018, 191: 80–94. DOI: 10.1016/j.conbuildmat.2018.09.202.
|
[16] |
ZHOU X, XIE Y J, LONG G C, et al. Effect of surface characteristics of aggregates on the compressive damage of high-strength concrete based on 3D discrete element method [J]. Construction and Building Materials, 2021, 301: 124101. DOI: 10.1016/j.conbuildmat.2021.124101.
|
[17] |
YU Y, ZHENG Y, ZHAO X Y. Mesoscale modeling of recycled aggregate concrete under uniaxial compression and tension using discrete element method [J]. Construction and Building Materials, 2021, 268: 121116. DOI: 10.1016/j.conbuildmat.2020.121116.
|
[18] |
CAO K W, DONG F R, YU Y H, et al. Infrared radiation response mechanism of sandstone during loading and fracture process [J]. Theoretical and Applied Fracture Mechanics, 2023, 126: 103974. DOI: 10.1016/j.tafmec.2023.103974.
|
[19] |
LI X L, LI Z H, YIN S, et al. Experimental study on infrared thermal response characteristics of water-bearing concrete under drop hammer impact [J]. Infrared Physics & Technology, 2023, 135: 104899. DOI: 10.1016/j.infrared.2023.104899.
|
[20] |
吴立新, 李国华, 吴焕萍. 热红外成像用于固体撞击瞬态过程监测的实验探索 [J]. 科学通报, 2001, 46(2): 172–176. DOI: 10.1360/csb2001-46-2-172.
WU L X, WU H P, LI G H. Experimental exploration to thermal infrared imaging for detecting the transient process of solid impact [J]. Chinese Scientific Bulletin, 2001, 46(10): 872–877. DOI: 10.1007/BF02900442.
|
[21] |
张宗贤, 喻勇, 赵清. 岩石断裂韧度的温度效应 [J]. 中国有色金属学报, 1994, 4(2): 7–11. DOI: 10.19476/j.ysxb.1004.0609.1994.02.003.
|
[22] |
张志镇, 高峰, 刘治军. 温度影响下花岗岩冲击倾向及其微细观机制研究 [J]. 岩石力学与工程学报, 2010, 29(8): 1591–1602.
ZHANG Z Z, GAO F, LIU Z J. Research on rockburst proneness and its microcosmic mechanism of granite considering temperature effect [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1591–1602.
|
[23] |
ALGOURDIN N, PLIYA P, BEAUCOUR A L, et al. Effect of fine and coarse recycled aggregates on high-temperature behaviour and residual properties of concrete [J]. Construction and Building Materials, 2022, 341: 127847. DOI: 10.1016/j.conbuildmat.2022.127847.
|
[24] |
HIASA S, BIRGUL R, NECATI CATBAS F. A data processing methodology for infrared thermography images of concrete bridges [J]. Computers & Structures, 2017, 190: 205–218. DOI: 10.1016/j.compstruc.2017.05.011.
|
[25] |
YIN S, LI Z H, SONG D Z, et al. Experimental study on the infrared precursor characteristics of gas-bearing coal failure under loading [J]. International Journal of Mining Science and Technology, 2021, 31(5): 901–912. DOI: 10.1016/j.ijmst.2021.07.003.
|
[26] |
GAO Q Q, MA L Q, LIU W, et al. Research on the denoising method of infrared thermogram during rock fracture [J]. Infrared Physics & Technology, 2023, 131: 104651. DOI: 10.1016/j.infrared.2023.104651.
|
[27] |
ICHI E, DORAFSHAN S. Effectiveness of infrared thermography for delamination detection in reinforced concrete bridge decks [J]. Automation in Construction, 2022, 142: 104523. DOI: 10.1016/j.autcon.2022.104523.
|
[28] |
YIN S, LI Z H, WANG E Y, et al. The infrared thermal effect of coal failure with different impact types and its relationship with bursting liability [J]. Infrared Physics & Technology, 2024, 138: 105263. DOI: 10.1016/j.infrared.2024.105263.
|
[29] |
吴立新, 钟声, 吴育华, 等. 落球撞击岩石热红外辐射温度的时延特征 [J]. 中国矿业大学学报, 2005, 34(5): 557–563. DOI: 10.3321/j.issn:1000-1964.2005.05.004.
WU L X, ZHONG S, WU Y H, et al. Time dependent features of thermal infrared radiation temperature of rock impacted by free-falling steel ball [J]. Journal of China University of Mining & Technology, 2005, 34(5): 557–563. DOI: 10.3321/j.issn:1000-1964.2005.05.004.
|
[30] |
吴立新, 吴育华, 钟声, 等. 岩石撞击的热红外成像探测研究进展与方向 [J]. 岩石力学与工程学报, 2006, 25(11): 2180–2186. DOI: 10.3321/j.issn:1000-6915.2006.11.003.
WU L X, WU Y H, ZHONG S, et al. Research progresses and directions of detection on rock impaction with thermal infrared imaging [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11): 2180–2186. DOI: 10.3321/j.issn:1000-6915.2006.11.003.
|
[31] |
刘善军, 吴立新, 张艳博. 岩石破裂前红外热像的时空演化特征 [J]. 东北大学学报(自然科学版), 2009, 30(7): 1034–1038. DOI: 10.3969/j.issn.1005-3026.2009.07.029.
LIU S J, WU L X, ZHANG Y B. Temporal-spatial evolution features of infrared thermal images before rock failure [J]. Journal of Northeastern University (Natural Science), 2009, 30(7): 1034–1038. DOI: 10.3969/j.issn.1005-3026.2009.07.029.
|
[32] |
邓志毅, 张东胜, 安里千. 热探测法监测岩石应力变化的实验研究 [J]. 中国矿业大学学报, 2006, 35(5): 623–627. DOI: 10.3321/j.issn:1000-1964.2006.05.012.
DENG Z Y, ZHANG D S, AN L Q. Experimental of monitoring stress variation of rock using a thermal detection [J]. Journal of China University of Mining & Technology, 2006, 35(5): 623–627. DOI: 10.3321/j.issn:1000-1964.2006.05.012.
|
[33] |
SUN X M, XU H C, HE M C, et al. Experimental investigation of the occurrence of rockburst in a rock specimen through infrared thermography and acoustic emission [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 93: 250–259. DOI: 10.1016/j.ijrmms.2017.02.005.
|
[34] |
LOU Q, HE X Q. Experimental study on infrared radiation temperature field of concrete under uniaxial compression [J]. Infrared Physics & Technology, 2018, 90: 20–30. DOI: 10.1016/j.infrared.2018.01.033.
|
[35] |
周子龙, 刘洋, 蔡鑫, 等. 冲击荷载下砂岩的红外辐射特性 [J]. 中南大学学报(自然科学版), 2022, 53(7): 2555–2562. DOI: 10.11817/j.issn.1672-7207.2022.07.015.
ZHOU Z L, LIU Y, CAI X, et al. Infrared radiation characteristics of sandstone exposed to impact loading [J]. Journal of Central South University (Science and Technology), 2022, 53(7): 2555–2562. DOI: 10.11817/j.issn.1672-7207.2022.07.015.
|
[36] |
TIAN H, LI Z H, YIN S, et al. Research on infrared radiation response and energy dissipation characteristics of sandstone crushing under impact load [J]. Engineering Geology, 2023, 322: 107171. DOI: 10.1016/j.enggeo.2023.107171.
|
[37] |
CHEN H Y, CHEN C. Determining the emissivity and temperature of building materials by infrared thermometer [J]. Construction and Building Materials, 2016, 126: 130–137. DOI: 10.1016/j.conbuildmat.2016.09.027.
|
[38] |
PEDRAM M, TAYLOR S, HAMILL G, et al. Experimental evaluation of heat transition mechanism in concrete with subsurface defects using infrared thermography [J]. Construction and Building Materials, 2022, 360: 129531. DOI: 10.1016/j.conbuildmat.2022.129531.
|
[39] |
Hodowany J. On the conversion of plastic work into heat [M]. California: California Institute of Technology, 1997: 44–49.
|
[40] |
MASON J J, ROSAKIS A J, RAVICHANDRAN G. On the strain and strain rate dependence of the fraction of plastic work converted to heat: an experimental study using high speed infrared detectors and the Kolsky bar [J]. Mechanics of Materials, 1994, 17(2/3): 135–145. DOI: 10.1016/0167-6636(94)90054-X.
|
[41] |
POTDAR Y K, ZEHNDER A T. Measurements and simulations of temperature and deformation fields in transient metal cutting [J]. Journal of Manufacturing Science and Engineering, 2003, 125(4): 645–655. DOI: 10.1115/1.1596571.
|
[42] |
NIETO-FUENTES J C, OSOVSKI S, RITTEL D. High-speed infrared thermal measurements of impacted metallic solids [J]. MethodsX, 2020, 7: 100914. DOI: 10.1016/j.mex.2020.100914.
|
[43] |
夏源明, 饶世国, 杨报昌. 红外瞬态测温装置及其在冲击拉伸试验中的应用 [J]. 实验力学, 1990, 5(2): 170–177.
XIA Y M, RAO S G, YANG B C. An infrared transient temperature measuring apparatus and its application to the tensile impact testing [J]. Journal of Experimental Mechanics, 1990, 5(2): 170–177.
|
[44] |
刘永贵, 唐志平, 崔世堂. 冲击载荷下瞬态温度的实时测量方法 [J]. 爆炸与冲击, 2014, 34(4): 471–475. DOI: 10.11883/1001-1455(2014)04-0471-05.
LIU Y G, TANG Z P, CUI S T. Real-time measuring methods for transient temperature under shock loading [J]. Explosion and Shock Waves, 2014, 34(4): 471–475. DOI: 10.11883/1001-1455(2014)04-0471-05.
|
[45] |
ZHANG T, GUO Z R, YUAN F P, et al. Investigation on the plastic work-heat conversion coefficient of 7075-T651 aluminum alloy during an impact process based on infrared temperature measurement technology [J] Acta Mechanica Sinica, 2018, 34(2): 327–333. DOI: 10.1007/s10409-017-0673-8.
|
[46] |
R. D. 小哈德逊. 红外系统原理 [M]. 北京: 国防工业出版社, 1975.
HUDSON R D JR. Infrared systen engineering [M]. Beijing: National Defense Industry Press, 1975.
|
[47] |
晏敏, 颜永红, 曾云, 等. 非接触式红外测温原理及误差分析 [J]. 计量技术, 2005(1): 23–25. DOI: 10.3969/j.issn.1000-0771.2005.01.009.
|
[48] |
ZEHNDER A T, GUDURU P R, ROSAKIS A J, et al. Million frames per second infrared imaging system [J]. Review of Scientific Instruments, 2000, 71(10): 3762–3768. DOI: 10.1063/1.1310350.
|
[49] |
宋力, 胡时胜. SHPB数据处理中的二波法与三波法 [J]. 爆炸与冲击, 2005, 25(4): 368–373. DOI: 10.3321/j.issn:1001-1455.2005.04.014.
SONG L, HU S S. Two-wave and three-wave method in SHPB data processing [J]. Explosion and Shock Waves, 2005, 25(4): 368–373. DOI: 10.3321/j.issn:1001-1455.2005.04.014.
|
[50] |
赵毅鑫, 肖汉, 黄亚琼. 霍普金森杆冲击加载煤样巴西圆盘劈裂试验研究 [J]. 煤炭学报, 2014, 39(2): 286–291. DOI: 10.13225/j.cnki.jccs.2013.2011.
ZHAO Y X, XIAO H, HUANG Y Q. Dynamic split tensile test of Brazilian disc of coal with split Hopkinson pressure bar loading [J]. Journal of China Coal Society, 2014, 39(2): 286–291. DOI: 10.13225/j.cnki.jccs.2013.2011.
|
[51] |
LI J H, YANG L Y, XIE H Z, et al. Research on impact toughness and crack propagation of basalt fiber reinforced concrete under SHPB splitting test [J]. Journal of Building Engineering, 2023, 77: 107445. DOI: 10.1016/j.jobe.2023.107445.
|
[52] |
PHAM T M, LIU J L, TRAN P, et al. Dynamic compressive properties of lightweight rubberized geopolymer concrete [J]. Construction and Building Materials, 2020, 265: 120753. DOI: 10.1016/j.conbuildmat.2020.120753.
|
[53] |
HUANG B F, XIAO Y. Compressive impact tests of lightweight concrete with 155-mm-diameter spilt Hopkinson pressure bar [J]. Cement and Concrete Composites, 2020, 114: 103816. DOI: 10.1016/j.cemconcomp.2020.103816.
|
[54] |
BAO X H, LI Y P, CHEN X S, et al. Investigation on the flexural behaviour and crack propagation of hybrid steel fibre reinforced concrete with a low fibre content for tunnel structures [J]. Construction and Building Materials, 2024, 417: 135253. DOI: 10.1016/j.conbuildmat.2024.135253.
|
[55] |
LI B, CHEN Z K, WANG S N, et al. A review on the damage behavior and constitutive model of fiber reinforced concrete at ambient temperature [J]. Construction and Building Materials, 2024, 412: 134919. DOI: 10.1016/j.conbuildmat.2024.134919.
|