Citation: | WU Hao, CHEN Wenbin, CHEN De. Blast-resistant analysis and design of CFRP sheet strengthened masonry infilled walls[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0280 |
[1] |
THOMPSON D, BROWN S, MALLONEE S, et al. Fatal and non-fatal injuries among U. S. Air Force personnel resulting from the terrorist bombing of the Khobar Towers [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2004, 57(2): 208–215. DOI: 10.1097/01.TA.0000142672.99660.80.
|
[2] |
中华人民共和国住房和城乡建设部. 纤维增强复合材料工程应用技术标准: GB 50608–2020 [S]. 北京: 中国计划出版社, 2020.
Ministry of Housing and Urban Rural Development of the People᾿s Republic of China. Technical standard for fiber reinforced polymer (FRP) in construction: GB 50608–2020 [S]. Beijing: China Planning Press, 2020.
|
[3] |
ACI 440 Committee. ACI 440.2R-08 Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures [S]. Farmington Hills, MI: American Concrete Institute, 2008.
|
[4] |
ORTON S L, CHIARITO V P, MINOR J K, et al. Experimental testing of CFRP-strengthened reinforced concrete slab elements loaded by close-in blast [J]. Journal of Structural Engineering, 2014, 140(2): 04013060. DOI: 10.1061/(ASCE)ST.1943-541X.0000821.
|
[5] |
SHI Y C, XIONG W, LI Z X, et al. Experimental studies on the local damage and fragments of unreinforced masonry walls under close-in explosions [J]. International Journal of Impact Engineering, 2016, 90: 122–131. DOI: 10.1016/j.ijimpeng.2015.12.002.
|
[6] |
MUSZYNSKI L C, PURCELL M R. Use of composite reinforcement to strengthen concrete and air-entrained concrete masonry walls against air blast [J]. Journal of Composites for Construction, 2003, 7(2): 98–108. DOI: 10.1061/(ASCE)1090-0268(2003)7:2(98).
|
[7] |
CHEN L, FANG Q, FAN J Y, et al. Responses of masonry infill walls retrofitted with CFRP, steel wire mesh and laminated bars to blast loadings [J]. Advances in Structural Engineering, 2014, 17(6): 817–836. DOI: 10.1260/1369-4332.17.6.817.
|
[8] |
万军. 碳纤维布加固砌体填充墙抗近距离小当量炸药爆炸实验研究 [J]. 工程力学, 2019, 36(S1): 293–297. DOI: 10.6052/j.issn.1000-4750.2018.04.S062.
WAN J. Blast response of CFRP-reinforced concrete masonry wall against small stand-off distance explosive charge [J]. Engineering Mechanics, 2019, 36(S1): 293–297. DOI: 10.6052/j.issn.1000-4750.2018.04.S062.
|
[9] |
LI Z, CHEN L, FANG Q, et al. Experimental and numerical study on CFRP strip strengthened clay brick masonry walls subjected to vented gas explosions [J]. International Journal of Impact Engineering, 2019, 129: 66–79. DOI: 10.1016/j.ijimpeng.2019.02.013.
|
[10] |
TAN K H, PATOARY M K H. Blast resistance of FRP-strengthened masonry walls. I: approximate analysis and field explosion tests [J]. Journal of Composites for Construction, 2009, 13(5): 422–430. DOI: 10.1061/(ASCE)1090-0268(2009)13:5(422).
|
[11] |
胡嘉辉, 吴昊, 方秦. 近区爆炸作用下砌体填充墙损伤破坏与动态响应的数值模拟 [J]. 振动与冲击, 2021, 40(9): 1–11. DOI: 10.13465/j.cnki.jvs.2021.09.001.
HU J H, WU H, FANG Q, et al. Numerical simulation of damage and dynamic response of masonry infilled wall under near zone explosion [J]. Journal of Vibration and Shock, 2021, 40(9): 1–11. DOI: 10.13465/j.cnki.jvs.2021.09.001.
|
[12] |
CHEN D, WU H, FANG Q. Simplified micro-model for brick masonry walls under out-of-plane quasi-static and blast loadings [J]. International Journal of Impact Engineering, 2023, 174: 104529. DOI: 10.1016/j.ijimpeng.2023.104529.
|
[13] |
HAO H, WU C Q. Numerical simulation of damage of low-rise RC frame structures with infilled masonry walls to explosive loads [J]. Australian Journal of Structural Engineering, 2006, 7(1): 13–22. DOI: 10.1080/13287982.2006.11464960.
|
[14] |
ALSAYED S H, ELSANADEDY H M, AL-ZAHERI Z M, et al. Blast response of GFRP-strengthened infill masonry walls [J]. Construction and Building Materials, 2016, 115: 438–451. DOI: 10.1016/j.conbuildmat.2016.04.053.
|
[15] |
万军. 碳纤维布加固砌体填充墙抗近距离小当量炸药爆炸数值模拟研究 [J]. 工程力学, 2020, 37(S1): 82–90. DOI: 10.6052/j.issn.1000-4750.2019.04.S012.
WAN J. Numerical simulation of CFRP reinforced concrete masonry wall against small stand-off distance explosive charge [J]. Engineering Mechanics, 2020, 37(S1): 82–90. DOI: 10.6052/j.issn.1000-4750.2019.04.S012.
|
[16] |
LI Z, CHEN L, FANG Q, et al. Experimental and numerical study of basalt fiber reinforced polymer strip strengthened autoclaved aerated concrete masonry walls under vented gas explosions [J]. Engineering Structures, 2017, 152: 901–919. DOI: 10.1016/j.engstruct.2017.09.055.
|
[17] |
彭培, 李展, 张亚栋, 等. 燃气爆炸作用下蒸压加气混凝土砌体墙的加固性能 [J]. 爆炸与冲击, 2020, 40(3): 035101. DOI: 10.11883/bzycj-2018-0252.
PENG P, LI Z, ZHANG Y D, et al. Performance of retrofitted autoclaved aerated concrete masonry walls subjected to gas explosions [J]. Explosion and Shock Waves, 2020, 40(3): 035101. DOI: 10.11883/bzycj-2018-0252.
|
[18] |
Livermore Software Technology Corporation (LSTC). LS-DYNA keyword user’s manual [M]. Livermore, CA: LSTC, 2018.
|
[19] |
中华人民共和国住房和城乡建设部. 砌体基本力学性能试验方法标准: GB/T 50129-2011 [S]. 北京: 中国计划出版社, 2012.
Ministry of Housing and Urban Rural Development of the People᾿s Republic of China. Standard for test method of basic mechanics properties of masonry: GB/T 50129-2011 [S]. Beijing: China Planning Press, 2012.
|
[20] |
CHANG F K, CHANG K Y. Post-failure analysis of bolted composite joints in tension or shear-out mode failure [J]. Journal of Composite Materials, 1987, 21(9): 809–833. DOI: 10.1177/002199838702100903.
|
[21] |
CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations [J]. Journal of Composite Materials, 1987, 21(9): 834–855. DOI: 10.1177/002199838702100904.
|
[22] |
KRISHNAMOORTHY S K, HÖPTNER J, KOPP G, et al. Prediction of structural response of FRP composites for conceptual design of vehicles under impact loading [C]// ALYOTECH. Proceedings of the 8th European LS-DYNA Conference. Strasburg, 2011.
|
[23] |
BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus [J]. Composites Science and Technology, 1996, 56(4): 439–449. DOI: 10.1016/0266-3538(96)00005-X.
|
[24] |
刘桂秋. 砌体结构基本受力性能的研究 [D]. 长沙: 湖南大学, 2005.
LIU G Q. The research on the basic mechanical behavior of masonry structure [D]. Changsha: Hunan University, 2005.
|
[25] |
蒋济同, 周新智. 基于分离式建模的砌体墙力学性能有限元分析参数探讨 [J]. 建筑结构, 2019, 49(S1): 640–644. DOI: 10.19701/j.jzjg.2019.S1.133.
JIANG J T, ZHOU X Z. Discussion on parameters in finite element analysis of mechanical properties of masonry wall based on separation modeling [J]. Building Structure, 2019, 49(S1): 640–644. DOI: 10.19701/j.jzjg.2019.S1.133.
|
[26] |
中华人民共和国住房和城乡建设部. 砌体结构设计规范: GB 50003-2011 [S]. 北京: 中国计划出版社, 2012.
Ministry of Housing and Urban Rural Development of the People᾿s Republic of China. Code for design of masonry structures: GB 50003-2011 [S]. Beijing: China Planning Press, 2012.
|
[27] |
VAN DER PLUIJM R. Out-of-plane bending of masonry: behaviour and strength [D]. Eindhoven, the Netherlands: Eindhoven University of Technology, 1999.
|
[28] |
Department of Homeland Security. Primer to design safe school projects in case of terrorist attacks and school shootings: FEMA 428 [M]. Washington: Federal Emergency Management Agency, 2012.
|
[29] |
中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 建筑抗震设计规范: GB 50011-2010 [S]. 北京: 中国建筑工业出版社, 2016.
Ministry of Housing and Urban Rural Development of the People᾿s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People᾿s Republic of China. Code for seismic design of buildings: GB 50011-2010 [S]. Beijing: China Architecture & Building Press, 2016.
|
[30] |
LI R W, ZHANG N, WU H, et al. Vehicular impact resistance of FRP-strengthened RC bridge pier [J]. Journal of Bridge Engineering, 2022, 27(8): 04022062. DOI: 10.1061/(ASCE)BE.1943-5592.0001901.
|
[31] |
XU J P, WU H, MA L L, et al. Experimental and numerical study on axial capacity of FRP-rehabilitated postblast RC bridge pier [J]. Journal of Bridge Engineering, 2023, 28(10): 04023070. DOI: 10.1061/JBENF2.BEENG-6302.
|