• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
LI Min, XIAO Huahua. Study on deflagration-to-detonation transition in a staggered array of obstacles[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0284
Citation: LI Min, XIAO Huahua. Study on deflagration-to-detonation transition in a staggered array of obstacles[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0284

Study on deflagration-to-detonation transition in a staggered array of obstacles

doi: 10.11883/bzycj-2024-0284
  • Received Date: 2024-08-13
  • Rev Recd Date: 2025-02-09
  • Available Online: 2025-02-17
  • Study on gas deflagration-to-detonation transition (DDT) is of great significance for the research and development of industrial explosion prevention and detonation propulsion technology. Staggered array of obstacles is a typical obstacle layout that may be involved in the gas ignition and explosion scenario. Its existence usually significantly promotes the occurrence of DDT. In view of the lack of understanding of DDT in staggered array of obstacles, high-precision algorithm and dynamic adaptive grid were applied to solve the two-dimensional, fully compressible reactivity Navier-Stokes equations coupled with a calibrated chemical-diffusive model. Numerical investigation on the initiation process of DDT of premixed hydrogen and air in staggered array of square obstacles under different obstacle spacings was carried out. The results showed that decreasing obstacle spacing is beneficial to increase flame surface area in the early stage of flame acceleration and enhance compression of unburned gas by shock wave in the later stage, thus shortening DDT run-up time and distance. However, when the obstacle spacing is reduced to a threshold value, stuttering detonation occurs and the DDT run-up distance increases. The occurrence of DDT is mainly caused by the interaction between the flame and the shock wave reflected from the front wall of obstacle. The detonation partially decouples when it diffracts around an obstacle. Detonation re-initiation may be triggered when the decoupled detonation collides with a wall or with the shock wave or failure detonation wave from the other side of the obstacle. If the obstacle spacing is too small, the shock wave intensity decays significantly during detonation decoupling. This can easily lead to detonation failure. In addition, shock waves can be reflected off the staggered array of square obstacles in the vertical and parallel directions to the flame propagation direction, which help shock waves to act on the flame and unburned gas mixture. Therefore, DDT is more likely to be initiated in the staggered array of square obstacles than that of circular obstacles.
  • loading
  • [1]
    CICCARELLI G, DOROFEEV S. Flame acceleration and transition to detonation in ducts [J]. Progress in Energy and Combustion Science, 2008, 34(4): 499–550. DOI: 10.1016/j.pecs.2007.11.002.
    [2]
    CHAO J, LEE J H S. The propagation mechanism of high speed turbulent deflagrations [J]. Shock Waves, 2003, 12(4): 277–289. DOI: 10.1007/s00193-002-0161-2.
    [3]
    归明月, 张镭潆, 崔皓, 等. 与爆轰相关的湍流燃烧 [J]. 空气动力学学报, 2020, 38(3): 515–531. DOI: 10.7638/kqdlxxb-2020.0066.

    GUI M Y, ZHANG L Y, CUI H, et al. Turbulent combustion related with detoantion [J]. Acta Aerodynamica Sinica, 2020, 38(3): 515–531. DOI: 10.7638/kqdlxxb-2020.0066.
    [4]
    BJERKETVEDT D, BAKKE J R, VAN WINGERDEN K. Gas explosion handbook [J]. Journal of Hazardous Materials, 1997, 52(1): 1–150. DOI: 10.1016/S0304-3894(97)81620-2.
    [5]
    ROY G D, FROLOV S M, BORISOV A A, et al. Pulse detonation propulsion: challenges, current status, and future perspective [J]. Progress in Energy and Combustion Science, 2004, 30(6): 545–672. DOI: 10.1016/j.pecs.2004.05.001.
    [6]
    LI J L, FAN W, YAN C J, et al. Performance enhancement of a pulse detonation rocket engine [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2243–2254. DOI: 10.1016/j.proci.2010.07.048.
    [7]
    韩文虎, 张博, 王成. 气相爆轰波起爆与传播机理研究进展 [J]. 爆炸与冲击, 2021, 41(12): 121402. DOI: 10.11883/bzycj-2021-0398.

    HAN W H, ZHANG B, WANG C. Progress in studying mechanisms of initiation and propagation for gaseous detonations [J]. Explosion and Shock Waves, 2021, 41(12): 121402. DOI: 10.11883/bzycj-2021-0398.
    [8]
    WANG C, DONG X Z, CAO J, et al. Experimental investigation of flame acceleration and deflagration-to-detonation transition characteristics using coal gas and air mixture [J]. Combustion Science and Technology, 2015, 187(11): 1805–1820. DOI: 10.1080/00102202.2015.1059332.
    [9]
    CROSS M, CICCARELLI G. DDT and detonation propagation limits in an obstacle filled tube [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 380–386. DOI: 10.1016/j.jlp.2014.11.020.
    [10]
    余立新, 孙文超, 吴承康. 氢/空气火焰在半开口有障碍管道中的传播特性 [J]. 燃烧科学与技术, 2002, 8(1): 27–30. DOI: 10.3321/j.issn:1006-8740.2002.01.007.

    YU L X, SUN W C, WU C K. Flame propagation of H2-air in a semi-open obstructed tube [J]. Journal of Combustion Science and Technology, 2002, 8(1): 27–30. DOI: 10.3321/j.issn:1006-8740.2002.01.007.
    [11]
    WANG C J, WEN J X. Numerical simulation of flame acceleration and deflagration-to-detonation transition in hydrogen-air mixtures with concentration gradients [J]. International Journal of Hydrogen Energy, 2017, 42(11): 7657–7663. DOI: 10.1016/j.ijhydene.2016.06.107.
    [12]
    NI J, PAN J F, QUAYE E K, et al. Numerical simulation of hydrogen-air flame acceleration and detonation initiation in tubes equipped with arc obstacles of different chord lengths [J]. Acta Astronautica, 2020, 177: 192–201. DOI: 10.1016/j.actaastro.2020.07.025.
    [13]
    TEODORCZYK A, DROBNIAK P, DABKOWSKI A. Fast turbulent deflagration and DDT of hydrogen–air mixtures in small obstructed channel [J]. International Journal of Hydrogen Energy, 2009, 34(14): 5887–5893. DOI: 10.1016/j.ijhydene.2008.11.120.
    [14]
    王永佳, 范玮, 李舒欣, 等. 流体障碍物对爆震燃烧起爆性能影响的实验研究 [J]. 推进技术, 2017, 38(3): 646–652. DOI: 10.13675/j.cnki.tjjs.2017.03.021.

    WANG Y J, FAN W, LI S X, et al. Experimental study for effects of fluidic obstacles on detonation initiation performance [J]. Journal of Propulsion Technology, 2017, 38(3): 646–652. DOI: 10.13675/j.cnki.tjjs.2017.03.021.
    [15]
    WANG J B, ZHAO X Y, FAN L Y, et al. Effects of the quantity and arrangement of reactive jet obstacles on flame acceleration and transition to detonation: a numerical study [J]. Aerospace Science and Technology, 2023, 137: 108269. DOI: 10.1016/j.ast.2023.108269.
    [16]
    CHENG J, ZHANG B, LIU H, et al. Experimental study on the effects of different fluidic jets on the acceleration of deflagration prior its transition to detonation [J]. Aerospace Science and Technology, 2020, 106: 106203. DOI: 10.1016/j.ast.2020.106203.
    [17]
    OGAWA T, ORAN E S, GAMEZO V N. Numerical study on flame acceleration and DDT in an inclined array of cylinders using an AMR technique [J]. Computers & Fluids, 2013, 85: 63–70. DOI: 10.1016/j.compfluid.2012.09.029.
    [18]
    OGAWA T, GAMEZO V N, ORAN E S. Flame acceleration and transition to detonation in an array of square obstacles [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2): 355–362. DOI: 10.1016/j.jlp.2011.12.009.
    [19]
    PINOS T, CICCARELLI G. Combustion wave propagation through a bank of cross-flow cylinders [J]. Combustion and Flame, 2015, 162(9): 3254–3262. DOI: 10.1016/j.combustflame.2015.05.013.
    [20]
    XIAO H H, ORAN E S. Shock focusing and detonation initiation at a flame front [J]. Combustion and Flame, 2019, 203: 397–406. DOI: 10.1016/j.combustflame.2019.02.012.
    [21]
    XIAO H H, ORAN E S. Flame acceleration and deflagration-to-detonation transition in hydrogen-air mixture in a channel with an array of obstacles of different shapes [J]. Combustion and Flame, 2020, 220: 378–393. DOI: 10.1016/j.combustflame.2020.07.013.
    [22]
    LI M, LIU D D, SHEN T, et al. Effects of obstacle layout and blockage ratio on flame acceleration and DDT in hydrogen-air mixture in a channel with an array of obstacles [J]. International Journal of Hydrogen Energy, 2022, 47(8): 5650–5662. DOI: 10.1016/j.ijhydene.2021.11.178.
    [23]
    LI M, XIAO H H. A study of the occurrence of DDT in an array of obstacles: combined effects of longitudinal and transverse obstacle spacings [J]. Fuel, 2024, 357: 129813. DOI: 10.1016/j.fuel.2023.129813.
    [24]
    LI M, XIAO H H. Influence of longitudinal obstacle spacing on the deflagration-to-detonation transition through a bank of obstacles in a hydrogen-air mixture [J]. International Journal of Hydrogen Energy, 2023, 48(38): 14449–14463. DOI: 10.1016/j.ijhydene.2022.12.323.
    [25]
    KAPLAN C R, ÖZGEN A, ORAN E S. Chemical-diffusive models for flame acceleration and transition-to-detonation: genetic algorithm and optimisation procedure [J]. Combustion Theory and Modelling, 2019, 23(1): 67–86. DOI: 10.1080/13647830.2018.1481228.
    [26]
    KESSLER D A, GAMEZO V N, ORAN E S. Simulations of flame acceleration and deflagration-to-detonation transitions in methane–air systems [J]. Combustion and Flame, 2010, 157(11): 2063–2077. DOI: 10.1016/j.combustflame.2010.04.011.
    [27]
    TAYLOR E M, WU M W, MARTÍN M P. Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence [J]. Journal of Computational Physics, 2007, 223(1): 384–397. DOI: 10.1016/j.jcp.2006.09.010.
    [28]
    BATTEN P, LESCHZINER M A, GOLDBERG U C. Average-state Jacobians and implicit methods for compressible viscous and turbulent flows [J]. Journal of Computational Physics, 1997, 137(1): 38–78. DOI: 10.1006/jcph.1997.5793.
    [29]
    HOUIM R W, KUO K K. A low-dissipation and time-accurate method for compressible multi-component flow with variable specific heat ratios [J]. Journal of Computational Physics, 2011, 230(23): 8527–8553. DOI: 10.1016/j.jcp.2011.07.031.
    [30]
    GRINSTEIN F F, MARGOLIN L G, RIDER W J. Implicit large eddy simulation [M]. Cambridge: Cambridge University Press, 2007. DOI: 10.1017/CBO9780511618604.
    [31]
    ORAN E S. Understanding explosions – from catastrophic accidents to creation of the universe [J]. Proceedings of the Combustion Institute, 2015, 35(1): 1–35. DOI: 10.1016/j.proci.2014.08.019.
    [32]
    BORIS J P, GRINSTEIN F F, ORAN E S, et al. New insights into large eddy simulation [J]. Fluid Dynamics Research, 1992, 10(4/5/6): 199–228. DOI: 10.1016/0169-5983(92)90023-P.
    [33]
    LEE J J, DUPRÉ G, KNYSTAUTAS R, et al. Doppler interferometry study of unstable detonations [J]. Shock Waves, 1995, 5(3): 175–181. DOI: 10.1007/bf01435525.
    [34]
    潘振华, 张彭岗, 朱跃进, 等. 狭缝内乙烯/氧气预混气体爆轰几何极限的实验 [J]. 航空动力学报, 2016, 31(6): 1297–1302. DOI: 10.13224/j.cnki.jasp.2016.06.003.

    PAN Z H, ZHANG P G, ZHU Y J, et al. Experiment on geometrical limits of gaseous detonation of ethylene/oxygen mixtures in narrow gaps [J]. Journal of Aerospace Power, 2016, 31(6): 1297–1302. DOI: 10.13224/j.cnki.jasp.2016.06.003.
    [35]
    颜秉健, 张博, 高远, 等. 气相爆轰波近失效状态的传播模式 [J]. 爆炸与冲击, 2018, 38(6): 1435–1440. DOI: 10.11883/bzycj-2017-0167.

    YAN B J, ZHANG B, GAO Y, et al. Investigation of the propagation modes for gaseous detonation at near-limit condition [J]. Explosion and Shock Waves, 2018, 38(6): 1435–1440. DOI: 10.11883/bzycj-2017-0167.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (153) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return