Citation: | LI Min, XIAO Huahua. Study on deflagration-to-detonation transition in a staggered array of obstacles[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0284 |
[1] |
CICCARELLI G, DOROFEEV S. Flame acceleration and transition to detonation in ducts [J]. Progress in Energy and Combustion Science, 2008, 34(4): 499–550. DOI: 10.1016/j.pecs.2007.11.002.
|
[2] |
CHAO J, LEE J H S. The propagation mechanism of high speed turbulent deflagrations [J]. Shock Waves, 2003, 12(4): 277–289. DOI: 10.1007/s00193-002-0161-2.
|
[3] |
归明月, 张镭潆, 崔皓, 等. 与爆轰相关的湍流燃烧 [J]. 空气动力学学报, 2020, 38(3): 515–531. DOI: 10.7638/kqdlxxb-2020.0066.
GUI M Y, ZHANG L Y, CUI H, et al. Turbulent combustion related with detoantion [J]. Acta Aerodynamica Sinica, 2020, 38(3): 515–531. DOI: 10.7638/kqdlxxb-2020.0066.
|
[4] |
BJERKETVEDT D, BAKKE J R, VAN WINGERDEN K. Gas explosion handbook [J]. Journal of Hazardous Materials, 1997, 52(1): 1–150. DOI: 10.1016/S0304-3894(97)81620-2.
|
[5] |
ROY G D, FROLOV S M, BORISOV A A, et al. Pulse detonation propulsion: challenges, current status, and future perspective [J]. Progress in Energy and Combustion Science, 2004, 30(6): 545–672. DOI: 10.1016/j.pecs.2004.05.001.
|
[6] |
LI J L, FAN W, YAN C J, et al. Performance enhancement of a pulse detonation rocket engine [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2243–2254. DOI: 10.1016/j.proci.2010.07.048.
|
[7] |
韩文虎, 张博, 王成. 气相爆轰波起爆与传播机理研究进展 [J]. 爆炸与冲击, 2021, 41(12): 121402. DOI: 10.11883/bzycj-2021-0398.
HAN W H, ZHANG B, WANG C. Progress in studying mechanisms of initiation and propagation for gaseous detonations [J]. Explosion and Shock Waves, 2021, 41(12): 121402. DOI: 10.11883/bzycj-2021-0398.
|
[8] |
WANG C, DONG X Z, CAO J, et al. Experimental investigation of flame acceleration and deflagration-to-detonation transition characteristics using coal gas and air mixture [J]. Combustion Science and Technology, 2015, 187(11): 1805–1820. DOI: 10.1080/00102202.2015.1059332.
|
[9] |
CROSS M, CICCARELLI G. DDT and detonation propagation limits in an obstacle filled tube [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 380–386. DOI: 10.1016/j.jlp.2014.11.020.
|
[10] |
余立新, 孙文超, 吴承康. 氢/空气火焰在半开口有障碍管道中的传播特性 [J]. 燃烧科学与技术, 2002, 8(1): 27–30. DOI: 10.3321/j.issn:1006-8740.2002.01.007.
YU L X, SUN W C, WU C K. Flame propagation of H2-air in a semi-open obstructed tube [J]. Journal of Combustion Science and Technology, 2002, 8(1): 27–30. DOI: 10.3321/j.issn:1006-8740.2002.01.007.
|
[11] |
WANG C J, WEN J X. Numerical simulation of flame acceleration and deflagration-to-detonation transition in hydrogen-air mixtures with concentration gradients [J]. International Journal of Hydrogen Energy, 2017, 42(11): 7657–7663. DOI: 10.1016/j.ijhydene.2016.06.107.
|
[12] |
NI J, PAN J F, QUAYE E K, et al. Numerical simulation of hydrogen-air flame acceleration and detonation initiation in tubes equipped with arc obstacles of different chord lengths [J]. Acta Astronautica, 2020, 177: 192–201. DOI: 10.1016/j.actaastro.2020.07.025.
|
[13] |
TEODORCZYK A, DROBNIAK P, DABKOWSKI A. Fast turbulent deflagration and DDT of hydrogen–air mixtures in small obstructed channel [J]. International Journal of Hydrogen Energy, 2009, 34(14): 5887–5893. DOI: 10.1016/j.ijhydene.2008.11.120.
|
[14] |
王永佳, 范玮, 李舒欣, 等. 流体障碍物对爆震燃烧起爆性能影响的实验研究 [J]. 推进技术, 2017, 38(3): 646–652. DOI: 10.13675/j.cnki.tjjs.2017.03.021.
WANG Y J, FAN W, LI S X, et al. Experimental study for effects of fluidic obstacles on detonation initiation performance [J]. Journal of Propulsion Technology, 2017, 38(3): 646–652. DOI: 10.13675/j.cnki.tjjs.2017.03.021.
|
[15] |
WANG J B, ZHAO X Y, FAN L Y, et al. Effects of the quantity and arrangement of reactive jet obstacles on flame acceleration and transition to detonation: a numerical study [J]. Aerospace Science and Technology, 2023, 137: 108269. DOI: 10.1016/j.ast.2023.108269.
|
[16] |
CHENG J, ZHANG B, LIU H, et al. Experimental study on the effects of different fluidic jets on the acceleration of deflagration prior its transition to detonation [J]. Aerospace Science and Technology, 2020, 106: 106203. DOI: 10.1016/j.ast.2020.106203.
|
[17] |
OGAWA T, ORAN E S, GAMEZO V N. Numerical study on flame acceleration and DDT in an inclined array of cylinders using an AMR technique [J]. Computers & Fluids, 2013, 85: 63–70. DOI: 10.1016/j.compfluid.2012.09.029.
|
[18] |
OGAWA T, GAMEZO V N, ORAN E S. Flame acceleration and transition to detonation in an array of square obstacles [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2): 355–362. DOI: 10.1016/j.jlp.2011.12.009.
|
[19] |
PINOS T, CICCARELLI G. Combustion wave propagation through a bank of cross-flow cylinders [J]. Combustion and Flame, 2015, 162(9): 3254–3262. DOI: 10.1016/j.combustflame.2015.05.013.
|
[20] |
XIAO H H, ORAN E S. Shock focusing and detonation initiation at a flame front [J]. Combustion and Flame, 2019, 203: 397–406. DOI: 10.1016/j.combustflame.2019.02.012.
|
[21] |
XIAO H H, ORAN E S. Flame acceleration and deflagration-to-detonation transition in hydrogen-air mixture in a channel with an array of obstacles of different shapes [J]. Combustion and Flame, 2020, 220: 378–393. DOI: 10.1016/j.combustflame.2020.07.013.
|
[22] |
LI M, LIU D D, SHEN T, et al. Effects of obstacle layout and blockage ratio on flame acceleration and DDT in hydrogen-air mixture in a channel with an array of obstacles [J]. International Journal of Hydrogen Energy, 2022, 47(8): 5650–5662. DOI: 10.1016/j.ijhydene.2021.11.178.
|
[23] |
LI M, XIAO H H. A study of the occurrence of DDT in an array of obstacles: combined effects of longitudinal and transverse obstacle spacings [J]. Fuel, 2024, 357: 129813. DOI: 10.1016/j.fuel.2023.129813.
|
[24] |
LI M, XIAO H H. Influence of longitudinal obstacle spacing on the deflagration-to-detonation transition through a bank of obstacles in a hydrogen-air mixture [J]. International Journal of Hydrogen Energy, 2023, 48(38): 14449–14463. DOI: 10.1016/j.ijhydene.2022.12.323.
|
[25] |
KAPLAN C R, ÖZGEN A, ORAN E S. Chemical-diffusive models for flame acceleration and transition-to-detonation: genetic algorithm and optimisation procedure [J]. Combustion Theory and Modelling, 2019, 23(1): 67–86. DOI: 10.1080/13647830.2018.1481228.
|
[26] |
KESSLER D A, GAMEZO V N, ORAN E S. Simulations of flame acceleration and deflagration-to-detonation transitions in methane–air systems [J]. Combustion and Flame, 2010, 157(11): 2063–2077. DOI: 10.1016/j.combustflame.2010.04.011.
|
[27] |
TAYLOR E M, WU M W, MARTÍN M P. Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence [J]. Journal of Computational Physics, 2007, 223(1): 384–397. DOI: 10.1016/j.jcp.2006.09.010.
|
[28] |
BATTEN P, LESCHZINER M A, GOLDBERG U C. Average-state Jacobians and implicit methods for compressible viscous and turbulent flows [J]. Journal of Computational Physics, 1997, 137(1): 38–78. DOI: 10.1006/jcph.1997.5793.
|
[29] |
HOUIM R W, KUO K K. A low-dissipation and time-accurate method for compressible multi-component flow with variable specific heat ratios [J]. Journal of Computational Physics, 2011, 230(23): 8527–8553. DOI: 10.1016/j.jcp.2011.07.031.
|
[30] |
GRINSTEIN F F, MARGOLIN L G, RIDER W J. Implicit large eddy simulation [M]. Cambridge: Cambridge University Press, 2007. DOI: 10.1017/CBO9780511618604.
|
[31] |
ORAN E S. Understanding explosions – from catastrophic accidents to creation of the universe [J]. Proceedings of the Combustion Institute, 2015, 35(1): 1–35. DOI: 10.1016/j.proci.2014.08.019.
|
[32] |
BORIS J P, GRINSTEIN F F, ORAN E S, et al. New insights into large eddy simulation [J]. Fluid Dynamics Research, 1992, 10(4/5/6): 199–228. DOI: 10.1016/0169-5983(92)90023-P.
|
[33] |
LEE J J, DUPRÉ G, KNYSTAUTAS R, et al. Doppler interferometry study of unstable detonations [J]. Shock Waves, 1995, 5(3): 175–181. DOI: 10.1007/bf01435525.
|
[34] |
潘振华, 张彭岗, 朱跃进, 等. 狭缝内乙烯/氧气预混气体爆轰几何极限的实验 [J]. 航空动力学报, 2016, 31(6): 1297–1302. DOI: 10.13224/j.cnki.jasp.2016.06.003.
PAN Z H, ZHANG P G, ZHU Y J, et al. Experiment on geometrical limits of gaseous detonation of ethylene/oxygen mixtures in narrow gaps [J]. Journal of Aerospace Power, 2016, 31(6): 1297–1302. DOI: 10.13224/j.cnki.jasp.2016.06.003.
|
[35] |
颜秉健, 张博, 高远, 等. 气相爆轰波近失效状态的传播模式 [J]. 爆炸与冲击, 2018, 38(6): 1435–1440. DOI: 10.11883/bzycj-2017-0167.
YAN B J, ZHANG B, GAO Y, et al. Investigation of the propagation modes for gaseous detonation at near-limit condition [J]. Explosion and Shock Waves, 2018, 38(6): 1435–1440. DOI: 10.11883/bzycj-2017-0167.
|