Citation: | BI Weixin, LI Weibing, LI Junbao, ZHU Wei, LI Wenbin. Axial distribution of fragment initial velocities from cylindrical casing with different length-to-diameter ratios[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0294 |
[1] |
GURNEY R W. The initial velocities of fragments from bombs, shell, and grenades [M]. Aberdeen: Ballistic Research Laboratories, 1943.
|
[2] |
ZULKOSKI T. Development of optimum theoretical warhead design criteria [R]. China Lake: Naval Weapons Center, 1976.
|
[3] |
CHARRON Y J. Estimation of velocity distribution of fragmenting warheads using a modified Gurney method [M]. PN, 1979.
|
[4] |
HUANG G Y, LI W, FENG S S. Axial distribution of fragment velocities from cylindrical casing under explosive loading [J]. International Journal of Impact Engineering, 2015, 76: 20–27. DOI: 10.1016/j.ijimpeng.2014.08.007.
|
[5] |
GAO Y G, ZHANG B, YAN X M, et al. Axial distribution of fragment velocities from cylindrical casing with air parts at two ends [J]. International Journal of Impact Engineering, 2020, 140: 103535. DOI: 10.1016/j.ijimpeng.2020.103535.
|
[6] |
LIU H, HUANG G Y, GUO Z W, et al. Fragments velocity distribution and estimating method of thin-walled cylindrical improvised explosive devices with different length-to-diameter ratios [J]. Thin-Walled Structures, 2022, 175: 109212. DOI: 10.1016/j.tws.2022.109212.
|
[7] |
BI W X, LI W B, LUO Y S, et al. Pre-control of shell expansion fracture process by high energy beam [J]. Journal of Physics: Conference Series, 2023, 2478: 072002. DOI: 10.1088/1742-6596/2478/7/072002.
|
[8] |
XU H Y, LI W B, LI W B, et al. Fracture mechanism of a cylindrical shell cut by circumferential detonation collision [J]. Defence Technology, 2021, 17(5): 1650–1659. DOI: 10.1016/j.dt.2020.09.006.
|
[9] |
李元, 李燕华, 刘琛, 等. 预制破片战斗部爆轰产物泄露数值模拟 [J]. 北京理工大学学报, 2017, 37(8): 778–782. DOI: 10.15918/j.tbit1001-0645.2017.08.002.
LI Y, LI Y H, LIU C, et al. Modeling of the gas leakage of premade fragment warhead [J]. Transactions of Beijing institute of Technology, 2017, 37(8): 778–782. DOI: 10.15918/j.tbit1001-0645.2017.08.002.
|
[10] |
LI W, HUANG G Y, FENG S S. Effect of eccentric edge initiation on the fragment velocity distribution of a cylindrical casing filled with charge [J]. International Journal of Impact Engineering, 2015, 80: 107–115. DOI: 10.1016/j.ijimpeng.2015.01.007.
|
[11] |
XU W L, WANG C, CHEN D P. Formation of a bore-center annular shaped charge and its penetration into steel targets [J]. International Journal of Impact Engineering, 2019, 127: 122–134. DOI: 10.1016/j.ijimpeng.2019.01.008.
|
[12] |
BHATTACHARYA A K, NIX W D. Finite element simulation of indentation experiments [J]. International Journal of Solids and Structures, 1988, 24(9): 881–891. DOI: 10.1016/0020-7683(88)90039-X.
|
[13] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
|
[14] |
SOUERS P C, HASELMAN JR L C. Detonation equation of state at LLNL, 1993: UCRL-ID-116113 [R]. Livermore: Lawrence Livermore National Laboratory, 1994. DOI: 10.2172/10166640.
|
[15] |
陈刚, 陈忠富, 陶俊林, 等. 45钢动态塑性本构参量与验证 [J]. 爆炸与冲击, 2005, 25(5): 451–456. DOI: 10.11883/1001-1455(2005)05-0451-06.
CHEN G, CHEN Z F, TAO J L, et al. Investigation and validation on plastic constitutive parameters of 45 steel [J]. Explosion and Shock Waves, 2005, 25(5): 451–456. DOI: 10.11883/1001-1455(2005)05-0451-06.
|
[16] |
陈刚, 陈忠富, 徐伟芳, 等. 45钢的J-C损伤失效参量研究 [J]. 爆炸与冲击, 2007, 27(2): 131–135. DOI: 10.11883/1001-1455(2007)02-0131-05.
CHEN G, CHEN Z F, XU W F, et al. Investigation on the J-C ductile fracture parameters of 45 steel [J]. Explosion and Shock Waves, 2007, 27(2): 131–135. DOI: 10.11883/1001-1455(2007)02-0131-05.
|
[17] |
LI W B, WANG X M, LI W B. The effect of annular multi-point initiation on the formation and penetration of an explosively formed penetrator [J]. International Journal of Impact Engineering, 2010, 37(4): 414–424. DOI: 10.1016/j.ijimpeng.2009.08.008.
|
[18] |
张守中. 爆炸与冲击动力学 [M]. 北京: 兵器工业出版社, 1993.
ZHANG S Z. Explosion and impact dynamics [M]. Beijing: CNGC, 1993.
|
[19] |
DANEL J F, KAZANDJIAN L. A few remarks about the Gurney energy of condensed explosives [J]. Propellants, Explosives, Pyrotechnics, 2004, 29(5): 314–316. DOI: 10.1002/prep.200400060.
|
[20] |
高月光, 冯顺山, 刘云辉, 等. 不同端盖厚度的圆柱形装药壳体破片初速分布 [J]. 兵工学报, 2022, 43(7): 1527–1536. DOI: 10.12382/bgxb.2021.0443.
GAO Y G, FENG S S, LIU Y H, et al. Initial velocity distribution of fragments from cylindrical charge shells with different thick end caps [J]. Acta Armamentarii, 2022, 43(7): 1527–1536. DOI: 10.12382/bgxb.2021.0443.
|
[21] |
ANDERSON JR C E, PREDEBON W W, KARPP R R. Computational modeling of explosive-filled cylinders [J]. International Journal of Engineering Science, 1985, 23(12): 1317–1330. DOI: 10.1016/0020-7225(85)90110-7.
|
[22] |
DOBRATZ B M. LLNL explosives handbook: properties of chemical explosives and explosives and explosive simulants: UCRL-52997 [R]. Livermore: Lawrence Livermore National Laboratory. DOI: 10.2172/6530310.
|
[1] | ZHANG Wenchao, WANG Shu, LIANG Zengyou, QIN Bin, LU Haitao, CHEN Xinyuan, LU Wenjie. A study of blast wave protection efficiency of helmet based on air flow field pressure analysis[J]. Explosion And Shock Waves, 2022, 42(11): 113201. doi: 10.11883/bzycj-2021-0411 |
[2] | XIE Fupei, XU Fei, ZENG Zhuo, ZHOU Zhongyu, GU Zhuowei. Numerical simulation on stability of composite cylindrical shell under impact compression[J]. Explosion And Shock Waves, 2021, 41(11): 112201. doi: 10.11883/bzycj-2020-0431 |
[3] | LI Pengyi, WANG Zhongqi, XU Qian, LIANG Xingxing. Calculation methods for characteristic sizes of blasting cavities induced by finite-length cylindrical charges in soil[J]. Explosion And Shock Waves, 2019, 39(12): 124201. doi: 10.11883/bzycj-2018-0416 |
[4] | Sun Huixiang, Lu Feng, Chi Weisheng, Kang Ting, Liu Yuanfei. Dynamic interaction between surrounding rock and initial supporting structure subjected to explosion shock wave[J]. Explosion And Shock Waves, 2017, 37(4): 670-676. doi: 10.11883/1001-1455(2017)04-0670-07 |
[5] | Shen Huiming, Li Weibing, Wang Xiaoming, Li Wenbin, Dong Xiaoliang. Velocity distribution of fragments resulted by explosion of a cylindrical shell charge on multi-spots eccentric initiation[J]. Explosion And Shock Waves, 2017, 37(6): 1039-1045. doi: 10.11883/1001-1455(2017)06-1039-07 |
[6] | Li Li-sha, Du Jian-guo, Zhang Hong-hai, Xie Qing-liang. Numerical simulation of damage of brick wall subjected to blast shock vibration[J]. Explosion And Shock Waves, 2015, 35(4): 459-466. doi: 10.11883/1001-1455(2015)04-0459-08 |
[7] | FENG Qi-jing, HAO Peng-cheng, HANG Yi-hong, HE Chang-jiang, Lv Ji-xiang, JIANG Jian-sheng, LIANG Long-he. Eulerian numerical simulation of a shaped charge[J]. Explosion And Shock Waves, 2008, 28(2): 138-143. doi: 10.11883/1001-1455(2008)02-0138-06 |
[8] | MAO Dong-fang, LI Xiang-dong, SONG Liu-li. Numerical simulation of disturbance by sandwich explosive on jet[J]. Explosion And Shock Waves, 2008, 28(1): 86-91. doi: 10.11883/1001-1455(2008)01-0086-06 |
[9] | MA Ai-e, HUANG Feng-lei, CHU Zhe, LI Jin-zhu. Numerical simulation on yawed penetration into concrete[J]. Explosion And Shock Waves, 2008, 28(1): 33-37. doi: 10.11883/1001-1455(2008)01-0033-05 |
[10] | QU Ming, CHEN Xiao-wei. Numerical simulations on perforation of reinforced concrete targets[J]. Explosion And Shock Waves, 2008, 28(4): 341-349. doi: 10.11883/1001-1455(2008)04-0341-09 |
[11] | LI Xiao-jie, JIANG Li, ZHAO Zheng, LIU Da-hui, OU-YANG Xin. Numerical study on penetration of a high-speed-rotating bullet into the moving sheet-metal plate[J]. Explosion And Shock Waves, 2008, 28(1): 57-62. doi: 10.11883/1001-1455(2008)01-0057-05 |
[12] | XU Wei-fang, ZHONG Wei-zhou, CHEN Gang, LI Si-zhong, CHEN Zhong-fu, HUANG Xi-cheng. On geometric shape of the specimen in impact tensile test[J]. Explosion And Shock Waves, 2008, 28(2): 149-153. doi: 10.11883/1001-1455(2008)02-0149-05 |
[13] | LIU Jing-bo, LIU Xiang-qing, ZHAO Dong-dong. Effects of vertical fault fracture zones on the spreading of Rayleigh wave and ground motion[J]. Explosion And Shock Waves, 2008, 28(6): 507-514. doi: 10.11883/1001-1455(2008)06-0507-08 |
[14] | YANG Jing-guang, YU Yong-gang. Velocity prediction of big caliber gun based on traveling charge scheme[J]. Explosion And Shock Waves, 2008, 28(2): 161-165. doi: 10.11883/1001-1455(2008)02-0161-05 |
[15] | LIU Hong-yan, QIN Si-qing, YANG Jun. Simulation of rock failure by numerical manifold method under blasting load[J]. Explosion And Shock Waves, 2007, 27(1): 50-56. doi: 10.11883/1001-1455(2007)01-0050-07 |
[16] | TENG Hong-hui, Lv Jun-ming, JIANG Zong-lin. Downstream detonation initiation induced by interaction between shock wave and obstacle in combustible gas mixtures[J]. Explosion And Shock Waves, 2007, 27(3): 251-258. doi: 10.11883/1001-1455(2007)03-0251-08 |
[17] | ZHAO Yue-tang, LIANG Hui, FAN Bin. Numerical simulation of explosion wave propagation in the saturated soil[J]. Explosion And Shock Waves, 2007, 27(4): 352-357. doi: 10.11883/1001-1455(2007)04-0352-06 |
[18] | WU Han-ling, DUAN Zhuo-ping, WANG Yong-qing. Simulation investigation of rod-like jets[J]. Explosion And Shock Waves, 2006, 26(4): 328-332. doi: 10.11883/1001-1455(2006)04-0328-05 |
[19] | ZHANG Chong-yu, GU Yan, ZHANG Shi-wen, SUN Xue-lin, PENG Qi-xian. Study on expanding characteristic of steel tube driven by two head-on colliding detonation waves[J]. Explosion And Shock Waves, 2005, 25(3): 222-226. doi: 10.11883/1001-1455(2005)03-0222-05 |
[20] | TENG Hong-hui, ZHANG De-liang, LI Hui-huang, JIANG Zong-lin. Numerical investigation of detonation direct initiation induced by toroidal shock wave focusing[J]. Explosion And Shock Waves, 2005, 25(6): 512-518. doi: 10.11883/1001-1455(2005)06-0512-07 |