Volume 44 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
REN Qingfei, ZHANG Yongrou, HU Lingling, YIN Ziji. A new experimental technique of dynamic compression-shear combined loading based on metamaterials[J]. Explosion And Shock Waves, 2024, 44(10): 101001. doi: 10.11883/bzycj-2024-0297
Citation: REN Qingfei, ZHANG Yongrou, HU Lingling, YIN Ziji. A new experimental technique of dynamic compression-shear combined loading based on metamaterials[J]. Explosion And Shock Waves, 2024, 44(10): 101001. doi: 10.11883/bzycj-2024-0297

A new experimental technique of dynamic compression-shear combined loading based on metamaterials

doi: 10.11883/bzycj-2024-0297
  • Received Date: 2024-08-19
  • Rev Recd Date: 2024-09-26
  • Available Online: 2024-09-30
  • Publish Date: 2024-10-30
  • The mechanical properties of materials or structures under dynamic compression-shear combined loading conditions significantly influence their engineering applications. However, existing experimental methodologies for dynamic combined loading confront challenges, such as the difficulty in synchronously applying compression and shear waves to test specimens, in addition to the high cost of experimental equipment. This study introduces a novel experimental technique that utilizes compression-torsion coupling metamaterials for the conversion of stress waves, enabling synchronous dynamic compression-shear combined loading on a one-dimensional Hopkinson pressure bar. This technique offers several advantages, including precise load synchronization, a controllable shear-compression ratio, simplicity, convenience, and low cost. A detailed discussion is presented on the issue of triangular torsion signals that arise when the amplitude of torsional waves converted from compression-torsion metamaterials reaches considerable levels, coupled with insufficient inertial confinement in the transmission bar of the split Hopkinson pressure bar system. Additionally, corresponding solutions to this issue are proposed. Experimental tests were conducted on three materials with distinct yield stresses: titanium, 304 stainless steel, and 316L stainless steel, validating the effectiveness of this experimental technique. Furthermore, leveraging finite element models, an in-depth analysis was conducted on the influence of the geometric parameters of the compression-torsion coupling metamaterials on their compression-torsion coefficients and load-bearing capacities. By integrating these findings with experimental results, the applicability of this experimental technique was discussed, predicting its capability to test materials with strengths up to approximately 1 GPa and to apply shear-compression ratios up to 1.18 to specimens, providing a reference for its application in a broader range of fields. This innovative integration of metamaterials with traditional experimental equipment opens up new avenues for realizing more complex dynamic loading experiments.
  • loading
  • [1]
    胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾 [J]. 爆炸与冲击, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.

    HU S S, WANG L L, SONG L, et al. Review of the development of Hopkinson pressure bar technique in China [J]. Explosion and Shock Waves, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.
    [2]
    SILVA C M A, ROSA P A R, MARTINS P A F. An innovative electromagnetic compressive split Hopkinson bar [J]. International Journal of Mechanics and Materials in Design, 2009, 5: 281–288. DOI: 10.1007/s10999-009-9101-y.
    [3]
    谢若泽, 卢子兴, 田常津, 等. 聚氨酯泡沫塑料动态剪切力学行为的研究 [J]. 爆炸与冲击, 1999, 19(4): 315–321.

    XIE R Z, LU Z X, TIAN C J, et al. Studies of dynamic shear mechanical properties of PUR foamed plastics [J]. Explosion and Shock Waves, 1999, 19(4): 315–321.
    [4]
    DUFFY J, CAMPBELL J D, HAWLEY R H. On the use of a torsional split Hopkinson bar to study rate effects in 1100-0 aluminum [J]. 1971, 38(1): 83–91. DOI: 10.1115/1.3408771.
    [5]
    CAMPBELL J D, DOWLING A R. The behaviour of materials subjected to dynamic incremental shear loading [J]. Journal of the Mechanics and Physics of Solids, 1970, 18(1): 43–63. DOI: 10.1016/0022-5096(70)90013-X.
    [6]
    BAKER W E, YEW C H. Strain-rate effects in the propagation of torsional plastic waves [J]. 1966, 33(4): 917–923. DOI: 10.1115/1.3625202.
    [7]
    ELIBOL C, WAGNER M F X. Strain rate effects on the localization of the stress-induced martensitic transformation in pseudoelastic NiTi under uniaxial tension, compression and compression-shear [J]. Materials Science and Engineering: A, 2015, 643: 194–202. DOI: 10.1016/j.msea.2015.07.039.
    [8]
    秦彩芳, 许泽建, 窦旺, 等. 金属材料在复杂应力状态下的塑性流动特性及本构模型 [J]. 爆炸与冲击, 2022, 42(9): 091404. DOI: 10.11883/bzycj-2021-0308.

    QIN C F, XU Z J, DOU W, et al. Plastic flow properties and constitutive model of metallic materials under complex stress states [J]. Explosion and Shock Waves, 2022, 42(9): 091404. DOI: 10.11883/bzycj-2021-0308.
    [9]
    姚国文, 刘占芳, 黄培彦. 压剪复合冲击下氧化铝陶瓷的剪切响应实验研究 [J]. 爆炸与冲击, 2005, 25(2): 119–124. DOI: 10.11883/1001-1455(2005)02-0119-06.

    YAO G W, LIU Z F, HUANG P Y. Experimental study on shear response of alumina under combined compression and shear loading [J]. Explosion And Shock Waves, 2005, 25(2): 119–124. DOI: 10.11883/1001-1455(2005)02-0119-06.
    [10]
    LEWIS J L, GOLDSMITH W. A biaxial split Hopkinson bar for simultaneous torsion and compression [J]. Review of Scientific Instruments, 1973, 44(7): 811–813. DOI: 10.1063/1.1686253.
    [11]
    HARTMANN K H, KUNZE H D, MEYER L W. Shock waves and high-strain-rate phenomena in metals: concepts and applications [M]. Boston: Springer, 1981: 325–337. DOI: 10.1007/978-1-4613-3219-0_21.
    [12]
    RITTEL D, LEE S, RAVICHANDRAN G. A shear-compression specimen for large strain testing [J]. Experimental Mechanics, 2002, 42: 58–64. DOI: 10.1007/BF02411052.
    [13]
    MEYER L W, STASKEWITSCH E, BURBLIES A. Adiabatic shear failure under biaxial dynamic compression/shear loading [J]. Mechanics of Materials, 1994, 17(2/3): 203–214. DOI: 10.1016/0167-6636(94)90060-4.
    [14]
    HOU B, ONO A, ABDENNADHER S, et al. Impact behavior of honeycombs under combined shear-compression. Part Ⅰ: experiments [J]. International Journal of Solids and Structures, 2011, 48(5): 687–697. DOI: 10.1016/j.ijsolstr.2010.11.005.
    [15]
    郑文, 徐松林, 蔡超, 等. 基于Hopkinson压杆的动态压剪复合加载实验研究 [J]. 力学学报, 2012, 44(1): 124–131. DOI: 10.6052/0459-1879-2012-1-lxxb2011-103.

    ZHENG W, XU S L, CAI C, et al. A study of dynamic combined compression-shear loading technique based on Hopkinson pressure bar [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 124–131. DOI: 10.6052/0459-1879-2012-1-lxxb2011-103.
    [16]
    崔云霄, 卢芳云, 林玉亮, 等. 一种新的高应变率复合压剪实验技术 [J]. 实验力学, 2006(5): 584–590. DOI: 10.3969/j.issn.1001-4888.2006.05.007.

    CUI Y X, LU F Y, LIN Y L, et al. A new combined compression-shear loading technique at high strain rates [J]. Journal of Experimental Mechanics, 2006(5): 584–590. DOI: 10.3969/j.issn.1001-4888.2006.05.007.
    [17]
    赵鹏铎, 卢芳云, 陈荣, 等. 光通量法在SHPSB剪切应变测量中的应用 [J]. 爆炸与冲击, 2011, 31(3): 232–236. DOI: 10.11883/1001-1455(2011)03-0232-05.

    ZHAO P D, LU F Y, CHEN R, et al. Luminous flux method for measuring shear strain of the specimen in SHPSB [J]. Explosion and Shock Waves, 2011, 31(3): 232–236. DOI: 10.11883/1001-1455(2011)03-0232-05.
    [18]
    NIE H L, SUO T, SHI X P, et al. Symmetric split Hopkinson compression and tension tests using synchronized electromagnetic stress pulse generators [J]. International Journal of Impact Engineering, 2018, 122: 73–82. DOI: 10.1016/j.ijimpeng.2018.08.004.
    [19]
    LIU C L, WANG W B, SUO T, et al. Achieving combined tension-torsion split Hopkinson bar test based on electromagnetic loading [J]. International Journal of Impact Engineering, 2022, 168: 104287. DOI: 10.1016/j.ijimpeng.2022.104287.
    [20]
    王维斌, 索涛, 郭亚洲, 等. 电磁霍普金森杆实验技术及研究进展 [J]. 力学进展, 2021, 51(4): 729–754. DOI: 10.6052/1000-0992-20-024.

    WANG W B, SUO T, GUO Y Z, et al. Experimental technique and research progress of electromagnetic Hopkinson bar [J]. Advances in Mechanics, 2021, 51(4): 729–754. DOI: 10.6052/1000-0992-20-024.
    [21]
    JOHNSON J N. Shock propagation produced by planar impact in linearly elastic anisotropic media [J]. Journal of Applied Physics, 1971, 42(13): 5522–5530. DOI: 10.1063/1.1659974.
    [22]
    FRENZEL T, KADIC M, WEGENER M. Three-dimensional mechanical metamaterials with a twist [J]. Science, 2017, 358(6366): 1072–1074. DOI: 10.1126/science.aao4640.
    [23]
    FERNANDEZ-CORBATON I, ROCKSTUHL C, ZIEMKE P, et al. New twists of 3D chiral metamaterials [J]. Advanced Materials, 2019, 31(26): 1807742. DOI: 10.1002/adma.201807742.
    [24]
    XU W Y, ZHOU C, ZHANG H Y, et al. A flexible design framework for lattice-based chiral mechanical metamaterials considering dynamic energy absorption [J]. Thin-Walled Structures, 2024: 112108. DOI: 10.1016/j.tws.2024.112108.
    [25]
    MENG L, ZHONG M Z, GAO Y S, et al. Impact resisting mechanism of tension-torsion coupling metamaterials [J]. International Journal of Mechanical Sciences, 2024, 272: 109100. DOI: 10.1016/j.ijmecsci.2024.109100.
    [26]
    WANG S A, DENG C, OJO O, et al. Design and testing of a DNA-like torsional structure for energy absorption [J]. Materials & Design, 2023, 226: 111642. DOI: 10.1016/j.matdes.2023.111642.
    [27]
    WEI Y C, HUANG C Y, REN L Q, et al. Topological study about deformation behavior and energy absorption performances of 3D chiral structures under dynamic impacts [J]. The Journal of Strain Analysis for Engineering Design, 2023, 58(3): 208–220. DOI: 10.1177/03093247221101803.
    [28]
    PARK J, LEE G, KWON H, et al. All-polarized elastic wave attenuation and harvesting via chiral mechanical metamaterials [J]. Advanced Functional Materials, 2024: 2403550. DOI: 10.1002/adfm.202403550.
    [29]
    OU H F, HU L L, WANG Y B, et al. High-efficient and reusable impact mitigation metamaterial based on compression-torsion coupling mechanism [J]. Journal of the Mechanics and Physics of Solids, 2024, 186: 105594. DOI: 10.1016/j.jmps.2024.105594.
    [30]
    LI Y L, ZHANG H Q. Theoretical analysis on topological interface states of 1D compression-torsion coupling metamaterial [J]. Composite Structures, 2023, 305: 116556. DOI: 10.1016/j.compstruct.2022.116556.
    [31]
    WANG Y B, OU H F, HU L L. New type of overrunning clutch based on curved-plate compression-torsion metamaterial [J]. Acta Mechanica Sinica, 2024, 40(8): 423608. DOI: 10.1007/s10409-024-23608-x.
    [32]
    REN Q F, ZHANG Y R, HU L L, et al. Achieving synchronous compression-shear loading on SHPB by utilizing mechanical metamaterial [J]. International Journal of Impact Engineering, 2024, 186: 104888. DOI: 10.1016/j.ijimpeng.2024.104888.
    [33]
    QIAO D, YANG B, JIANG Z Y, et al. A new plastic flow theoretical model and verification for non-dense metals [J]. Acta Mechanica Sinica, 2023, 39(9): 423085. DOI: 10.1007/s10409-023-23085-x.
    [34]
    YE W K, HU L L, OU H F, et al. Mere tension output from spring-linkage-based mechanical metamaterials [J]. Science Advances, 2023, 9(30): 3870. DOI: 10.1126/sciadv.adh3870.
    [35]
    YASUDA H, MIYAZAWA Y, CHARALAMPIDIS E G, et al.Origami-based impact mitigation via rarefaction solitary wave creation [J]. Science Advances, 2019, 5(5): 2835. DOI: 10.1126/sciadv.aau2835.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)  / Tables(4)

    Article Metrics

    Article views (160) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return