Citation: | XU Peidong, NI Ping, YANG Bao, JIANG Zhenyu, LIU Yiping, LIU Zejia, ZHOU Licheng, TANG Liqun. An intermediate strain rate LSHPB system for soft materials and its application[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0307 |
[1] |
ZHANG Y T, ZHANG Y R, TANG L Q, et al. Uniaxial compression constitutive equations for saturated hydrogel combined water-expelled behavior with environmental factors and the size effect [J]. Mechanics of Advanced Materials and Structures, 2022, 29(28): 7491–7502. DOI: 10.1080/15376494.2021.2000682.
|
[2] |
ZHANG Y R, XU K J, BAI Y L, et al. Features of the volume change and a new constitutive equation of hydrogels under uniaxial compression [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 85: 181–187. DOI: 10.1016/j.jmbbm.2018.06.004.
|
[3] |
WANG J Y, ZHANG Y R, JIANG Z Y, et al. Mechanical behavior and constitutive equations of porcine brain tissue considering both solution environment effect and strain rate effect [J]. Mechanics of Advanced Materials and Structures, 2024, 31(10): 2115–2129. DOI: 10.1080/15376494.2022.2150917.
|
[4] |
WANG J Y, ZHANG Y R, LEI Z Y, et al. Hydrogels with brain tissue-like mechanical properties in complex environments [J]. Materials & Design, 2023, 234: 112338. DOI: 10.1016/j.matdes.2023.112338.
|
[5] |
XIE B X, XU P D, TANG L Q, et al. Dynamic mechanical properties of polyvinyl alcohol hydrogels measured by double-striker electromagnetic driving SHPB system [J]. International Journal of Applied Mechanics, 2019, 11(2): 1950018. DOI: 10.1142/S1758825119500182.
|
[6] |
BHUJANGRAO T, FROUSTEY C, IRIONDO E, et al. Review of intermediate strain rate testing devices [J]. Metals, 2020, 10(7): 894. DOI: 10.3390/met10070894.
|
[7] |
SONG B, CHEN W, LU W Y. Compressive mechanical response of a low-density epoxy foam at various strain rates [J]. Journal of Materials Science, 2007, 42(17): 7502–7507. DOI: 10.1007/s10853-007-1612-z.
|
[8] |
惠旭龙, 白春玉, 刘小川, 等. 宽应变率范围下2A16-T4铝合金动态力学性能 [J]. 爆炸与冲击, 2017, 37(5): 871–878. DOI: 10.11883/1001-1455(2017)05-0871-08.
XI X L, BAI C Y, LIU X C, et al. Dynamic mechanical properties of 2A16-T4 aluminum alloy at wide-ranging strain rates [J]. Explosion and Shock Waves, 2017, 37(5): 871–878. DOI: 10.11883/1001-1455(2017)05-0871-08.
|
[9] |
SONG B, SYN C J, GRUPIDO C L, et al. A long split hopkinson pressure bar (LSHPB) for Intermediate-rate characterization of soft materials [J]. Experimental Mechanics, 2008, 48(6): 809–815. DOI: 10.1007/s11340-007-9095-z.
|
[10] |
SHIM J, MOHR D. Using split Hopkinson pressure bars to perform large strain compression tests on polyurea at low, intermediate and high strain rates [J]. International Journal of Impact Engineering, 2009, 36(9): 1116–1127. DOI: 10.1016/j.ijimpeng.2008.12.010.
|
[11] |
钟东海, 郭鑫, 熊雪梅, 等. 直撞式霍普金森压杆二次加载技术 [J]. 爆炸与冲击, 2023, 43(4): 044101. DOI: 10.11883/bzycj-2022-0210.
ZHONG D H, GUO X, XIONG X M, et al. Direct-impact double-loading Hopkinson bar technique [J]. Explosion and Shock Waves, 2023, 43(4): 044101. DOI: 10.11883/bzycj-2022-0210.
|
[12] |
KIM J M, PARK J S, LEEM D H, et al. Determination of strain rate dependence at intermediate strain rates using acceleration information [J]. International Journal of Impact Engineering, 2023, 173: 104482. DOI: 10.1016/j.ijimpeng.2022.104482.
|
[13] |
JIA B, CHEN P W, RUSINEK A, et al. Thermo-viscoplastic behavior of DP800 steel at quasi-static, intermediate, high and ultra-high strain rates [J]. International Journal of Mechanical Sciences, 2022, 226: 107408. DOI: 10.1016/j.ijmecsci.2022.107408.
|
[14] |
QIN Z H, ZHU J N, LI W, et al. System ringing in impact test triggered by upper-and-lower yield points of materials [J]. International Journal of Impact Engineering, 2017, 108: 295–302. DOI: 10.1016/j.ijimpeng.2017.04.020.
|
[15] |
高光发. 夹心杆系统中一维弹塑性波演化精细分析(Ⅱ): 弹塑性交界面与平台段反射衰减 [J]. 爆炸与冲击, 2024, 44(8): 081442. DOI: 10.11883/bzycj-2023-0392.
GAO G F. Meticulous analysis of one-dimensional elasto-plastic wave evolution in sandwich rod systems (part Ⅱ): reflection attenuation at the elasto-plastic interface and platform section [J]. Explosion and Shock Waves, 2024, 44(8): 081442. DOI: 10.11883/bzycj-2023-0392.
|
[16] |
舒旗, 董新龙, 俞鑫炉. 基于Hopkinson压杆的M型试样动态拉伸实验方法研究 [J]. 爆炸与冲击, 2020, 40(8): 084101. DOI: 10.11883/bzycj-2019-0433.
SHU Q, DONG X L, YU X L. A dynamic tensile method for M-shaped specimen loaded by Hopkinson pressure bar [J]. Explosion and Shock Waves, 2020, 40(8): 084101. DOI: 10.11883/bzycj-2019-0433.
|
[17] |
ZHAO H, GARY G, KLEPACZKO J R. On the use of a viscoelastic split Hopkinson pressure bar [J]. International Journal of Impact Engineering, 1997, 19(4): 319–330. DOI: 10.1016/s0734-743x(96)00038-3.
|
[18] |
XU P D, TANG L Q, ZHANG Y R, et al. SHPB experimental method for ultra-soft materials in solution environment [J]. International Journal of Impact Engineering, 2022, 159: 104051. DOI: 10.1016/j.ijimpeng.2021.104051.
|
[19] |
LIU Z W, CHEN X M, LV X T, et al. A mini desktop impact test system using multistage electromagnetic launch [J]. Measurement, 2014, 49: 68–76. DOI: 10.1016/j.measurement.2013.11.029.
|
[20] |
王维斌, 索涛, 郭亚洲, 等. 电磁霍普金森杆实验技术及研究进展 [J]. 力学进展, 2021, 51(4): 729–754. DOI: 10.6052/1000-0992-20-024.
WANG W B, SUO T, GUO Y Z, et al. Experimental technique and research progress of electromagnetic Hopkinson bar [J]. Advances in Mechanics, 2021, 51(4): 729–754. DOI: 10.6052/1000-0992-20-024.
|
[21] |
杜冰, 郭亚洲, 李玉龙. 一种基于电磁霍普金森杆的材料动态包辛格效应测试装置及方法 [J]. 爆炸与冲击, 2020, 40(8): 081101. DOI: 10.11883/bzycj-2020-0050.
DU B, GUO Y Z, LI Y L. A novel technique for determining the dynamic Bauschinger effect by electromagnetic Hopkinson bar [J]. Explosion and Shock Waves, 2020, 40(8): 081101. DOI: 10.11883/bzycj-2020-0050.
|
[22] |
胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾 [J]. 爆炸与冲击, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.
HU S S, WANG L L, SONG L, et al. Review of the development of Hopkinson pressure bar technique in China [J]. Explosion and Shock Waves, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.
|
[23] |
谢倍欣, 汤立群, 姜锡权, 等. 用于软材料的双子弹电磁驱动SHPB系统 [J]. 爆炸与冲击, 2019, 39(5): 054101. DOI: 10.11883/bzycj-2017-0394.
XIE B X, TANG L Q, JIANG X Q, et al. A double-striker electromagnetic driving SHPB system for soft materials [J]. Explosion and Shock Waves, 2019, 39(5): 054101. DOI: 10.11883/bzycj-2017-0394.
|
[24] |
WANG L L, LABIBES K, AZARI Z, et al. Generalization of split Hopkinson bar technique to use viscoelastic bars [J]. International Journal of Impact Engineering, 1994, 15(5): 669–686. DOI: 10.1016/0734-743x(94)90166-i.
|
[25] |
XU P D, TANG L Q, WANG J Y, et al. Mechanical behavior of PVA hydrogels over a wide strain rate range and a new two-phase visco-hyperelastic constitutive model [J]. Mechanics of Advanced Materials and Structures, 2024: 1–14. DOI: 10.1080/15376494.2024.2386398. (查阅网上资料,未找到对应的卷期页码信息,请确认) .
|
[26] |
BACON C. An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar [J]. Experimental Mechanics, 1998, 38(4): 242–249. DOI: 10.1007/bf02410385.
|
[27] |
LUNDBERG B, HENCHOZ A. Analysis of elastic waves from two-point strain measurement [J]. Experimental Mechanics, 1977, 17(6): 213–218. DOI: 10.1007/BF02324491.
|
[28] |
巫绪涛, 胡时胜, 张芳荣. 两点应变测量法在SHPB测量技术上的运用 [J]. 爆炸与冲击, 2003, 23(4): 309–312. DOI: 10.11883/1001-1455(2003)04-0309-4.
WU X T, HU S S, ZHANG F R. Application of two-point strain measurement to the SHPB technique [J]. Explosion and Shock Waves, 2003, 23(4): 309–312. DOI: 10.11883/1001-1455(2003)04-0309-4.
|
[29] |
宋力, 胡时胜. SHPB数据处理中的二波法与三波法 [J]. 爆炸与冲击, 2005, 25(4): 368–373. DOI: 10.11883/1001-1455(2005)04-0368-06.
SONG L, HU S S. Two-wave and three-wave method in SHPB data processing [J]. Explosion and Shock Waves, 2005, 25(4): 368–373. DOI: 10.11883/1001-1455(2005)04-0368-06.
|
[30] |
GORHAM D A. The effect of specimen dimensions on high strain rate compression measurements of copper [J]. Journal of Physics D: Applied Physics, 1991, 24(8): 1489–1492. DOI: 10.1088/0022-3727/24/8/041.
|