• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
YUAN Yongxiang, LIU Yuexun, ZHAO Meng, WANG Long, HOU Chuantao, WANG Xuanjun, WU Shengchuan. In-situ tomography on damage evolution of solid propellant under dynamic loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0315
Citation: YUAN Yongxiang, LIU Yuexun, ZHAO Meng, WANG Long, HOU Chuantao, WANG Xuanjun, WU Shengchuan. In-situ tomography on damage evolution of solid propellant under dynamic loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0315

In-situ tomography on damage evolution of solid propellant under dynamic loading

doi: 10.11883/bzycj-2024-0315
  • Received Date: 2024-08-29
  • Rev Recd Date: 2025-01-09
  • Available Online: 2025-01-09
  • Structural damages in solid propellants can lead to combustion anomalies and affect ballistic performance. Utilizing synchrotron radiation X-ray computed tomography technology and an in-situ mechanical loading test system, the macro-meso structures of nitrate ester plasticized polyether (NEPE) solid propellant were observed in-situ at compressive rates of 0.1, 1.0, and 5.0 mm/s. The compressive process employed an intermittent loading mode. With loading paused each time the preset displacement was reached to enable scanning imaging, thereby capturing the state of the propellant at specific phases during compression. Following the in-situ imaging experiment, the tomographic images of the samples were processed through projection correction and phase recovery using PITRE and PITRE_BM software, followed by image bit-depth conversion to obtain 8-bit 2D grayscale slices. Through 3D reconstruction, the typical damages and evolutionary behaviors of the solid propellant were analyzed, exploring the macroscopic deformation as well as the distribution and propagation patterns of internal micro-cracks. Results indicate that most micro-cracks nucleate and grow at the interface between filled particles and the matrix, with meso-pore evolution being rate-dependent. Unlike the continuous damage growth under tensile loading, the nucleation, growth, and closure of pores occur simultaneously during compression. Under high-rate uniaxial compressive loading, the solid propellant exhibits characteristic trumpet-shaped deformation, with spatially distributed cracks primarily located around the propellant. Macroscopic surface damage results from micro-crack propagation between near-surface particles and the matrix, with crack propagation related to the spatial location of filled particles. Transversal and axial crack propagation modes exist under dynamic compressive loading, with the transition from vertically to horizontally oriented cracks in the matrix leading to crack closure.
  • loading
  • [1]
    BECKSTEAD M W, PUDUPPAKKAM K, THAKRE P, et al. Modeling of combustion and ignition of solid-propellant ingredients [J]. Progress in Energy and Combustion Science, 2007, 33(6): 497–551. DOI: 10.1016/j.pecs.2007.02.003.
    [2]
    余家泉, 许进升, 陈雄, 等. 推进剂/包覆层界面脱粘率相关特性研究 [J]. 航空学报, 2015, 36(12): 3861–3867. DOI: 10.7527/S1000-6893.2015.0089.

    YU J Q, XU J S, CHEN X, et al. Rate-dependent property of propellant and inhibitor interface debonding [J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3861–3867. DOI: 10.7527/S1000-6893.2015.0089.
    [3]
    陈雄, 许进升, 郑健. 固体推进剂黏弹性力学 [M]. 北京: 北京理工大学出版社, 2016: 142–179.

    CHEN X, XU J S, ZHENG J. Viscoelastic mechanics of solid propellants [M]. Beijing: Beijing Institute of Technology Press, 2016: 142–179.
    [4]
    侯晓, 张旭, 刘向阳, 等. 固体火箭发动机药柱结构完整性研究进展 [J]. 宇航学报, 2023, 44(4): 566–579. DOI: 10.3873/j.issn.1000-1328.2023.04.011.

    HOU X, ZHANG X, LIU X Y, et al. Research progress on structural integrity of solid rocket motor grain [J]. Journal of Astronautics, 2023, 44(4): 566–579. DOI: 10.3873/j.issn.1000-1328.2023.04.011.
    [5]
    赵伯华, 辛振河, 沈月萍. 固体推进剂的体积模量与体积蠕变 [J]. 兵工学报, 1993, 14(1): 87–91.

    ZHAO B H, XIN Z H, SHEN Y P. Bulk modulus and bulk creep of solid propellants [J]. Acta Armamentarii, 1993, 14(1): 87–91.
    [6]
    JANA M K, RENGANATHAN K, RAO G V. A method of non-linear viscoelastic analysis of solid propellant grains for pressure load [J]. Computers & Structures, 1994, 52(1): 61–67. DOI: 10.1016/0045-7949(94)90256-9.
    [7]
    TUSSIWAND G S, SAOUMA V E, TERZENBACH R, et al. Fracture mechanics of composite solid rocket propellant grains: material testing [J]. Journal of Propulsion and Power, 2009, 25(1): 60–73. DOI: 10.2514/1.34227.
    [8]
    XU F, ARAVAS N, SOFRONIS P. Constitutive modeling of solid propellant materials with evolving microstructural damage [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 2050–2073. DOI: 10.1016/j.jmps.2007.10.013.
    [9]
    RAE P J, PALMER S J P, GOLDREIN H T, et al. Quasi–static studies of the deformation and failure of PBX 9501 [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2002, 458(2025): 2227–2242. DOI: 10.1098/rspa.2002.0967.
    [10]
    ZHOU Z B, CHEN P W, HUANG F L, et al. Experimental study on the micromechanical behavior of a PBX simulant using SEM and digital image correlation method [J]. Optics and Lasers in Engineering, 2011, 49(3): 366–370. DOI: 10.1016/j.optlaseng.2010.11.001.
    [11]
    MILLER T C. Damage and dilatometry for solid propellants with digital image correlation [J]. Propellants, Explosives, Pyrotechnics, 2019, 44(2): 234–245. DOI: 10.1002/prep.201800283.
    [12]
    杨秋秋, 徐胜良, 强福智, 等. 固体推进剂SEM图像分形维数研究 [J]. 化学推进剂与高分子材料, 2021, 19(1): 63–67. DOI: 10.16572/j.issn1672-2191.202109010.

    YANG Q Q, XU S L, QIANG F Z, et al. Study on fractal dimension of SEM images of solid propellant [J]. Chemical Propellants & Polymeric Materials, 2021, 19(1): 63–67. DOI: 10.16572/j.issn1672-2191.202109010.
    [13]
    BUFFIERE J Y, MAIRE E, ADRIEN J, et al. In situ experiments with X ray tomography: an attractive tool for experimental mechanics [J]. Experimental Mechanics, 2010, 50(3): 289–305. DOI: 10.1007/s11340-010-9333-7.
    [14]
    吴圣川, 吴正凯, 胡雅楠, 等. 同步辐射光源四维原位成像助力材料微结构损伤高分辨表征 [J]. 机械工程材料, 2020, 44(6): 72–76. DOI: 10.11973/jxgccl202006016.

    WU S C, WU Z K, HU Y N, et al. High-resolution characterization of microstructural damage in materials by synchrotron radiation source 4D in-situ tomography [J]. Materials for Mechanical Engineering, 2020, 44(6): 72–76. DOI: 10.11973/jxgccl202006016.
    [15]
    WEN H D, CHERUKARA M J, HOLT M V. Time-resolved X-ray microscopy for materials science [J]. Annual Review of Materials Research, 2019, 49: 389–415. DOI: 10.1146/annurev-matsci-070616-124014.
    [16]
    KERSCHEN N E, SORENSEN C J, GUO Z R, et al. X-ray phase contrast imaging of the impact of a single HMX particle in a polymeric matrix [J]. Propellants, Explosives, Pyrotechnics, 2019, 44(4): 447–454. DOI: 10.1002/prep.201800002.
    [17]
    王龙, 刘岳勋, 吴圣川, 等. 基于原位X射线成像的推进剂损伤演化表征 [J]. 航空学报, 2023, 44(7): 427022. DOI: 10.7527/S1000-6893.2022.27022.

    WANG L, LIU Y X, WU S C, et al. In-situ X-ray tomography based characterization of propellant damage evolution [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 427022. DOI: 10.7527/S1000-6893.2022.27022.
    [18]
    魏晋芳, 赖国栋, 柴海伟, 等. 准静态拉伸下固体推进剂三维结构变形损伤失效机理研究 [J]. 固体火箭技术, 2023, 46(2): 186–194. DOI: 10.7673/j.issn.1006-2793.2023.02.003.

    WEI J F, LAI G D, CHAI H W, et al. Research on three-dimensional structural deformation failure mechanism of solid propellant under quasi-static tension [J]. Journal of Solid Rocket Technology, 2023, 46(2): 186–194. DOI: 10.7673/j.issn.1006-2793.2023.02.003.
    [19]
    LIU Y X, QIAN W J, WANG L, et al. In situ X-ray tomography study on internal damage evolution of solid propellant for carrier rockets [J]. Materials Science and Engineering: A, 2023, 882: 145451. DOI: 10.1016/j.msea.2023.145451.
    [20]
    张泰华, 白以龙, 王世英, 等. 准静态压缩对高能固体推进剂燃烧行为的影响 [J]. 兵工学报, 2000, 21(4): 365–367. DOI: 10.3321/j.issn:1000-1093.2000.04.020.

    ZHANG T H, BAI Y L, WANG S Y, et al. Quasi-static compression of high-energy solid propellants and their combustion [J]. Acta Armamentarii, 2000, 21(4): 365–367. DOI: 10.3321/j.issn:1000-1093.2000.04.020.
    [21]
    吴会民, 卢芳云, 卢力, 等. 压缩加载下三种含能材料细观破坏特征观察 [J]. 高压物理学报, 2005, 19(3): 213–218. DOI: 10.11858/gywlxb.2005.03.004.

    WU H M, LU F Y, LU L, et al. Microstructure fractural characteristics of energetic materials under compressive loading [J]. Chinese Journal of High Pressure Physics, 2005, 19(3): 213–218. DOI: 10.11858/gywlxb.2005.03.004.
    [22]
    王冉, 武毅, 白龙, 等. 宽温域宽应变率下丁羟四组元HTPB推进剂单轴压缩力学行为 [J]. 含能材料, 2024, 32(2): 183–192. DOI: 10.11943/CJEM2023119.

    WANG R, WU Y, BAI L, et al. Uniaxial compressive mechanical behavior of four-component HTPB propellant under wide temperature and strain rate range [J]. Chinese Journal of Energetic Materials, 2024, 32(2): 183–192. DOI: 10.11943/CJEM2023119.
    [23]
    HO S Y. High strain-rate impact studies of predamaged rocket propellants. I. Characterization of damage using a cumulative damage failure criterion [J]. Combustion and Flame, 1996, 104(4): 524–534. DOI: 10.1016/0010-2180(95)00166-2.
    [24]
    WANG Z J, QIANG H F, WANG T J, et al. A thermovisco-hyperelastic constitutive model of HTPB propellant with damage at intermediate strain rates [J]. Mechanics of Time-Dependent Materials, 2018, 22(3): 291–314. DOI: 10.1007/s11043-017-9357-9.
    [25]
    VISHAL V, CHANDRA D. Mechanical response and strain localization in coal under uniaxial loading, using digital volume correlation on X-ray tomography images [J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 154: 105103. DOI: 10.1016/j.ijrmms.2022.105103.
    [26]
    QIAN W J, WU S C, LEI L M, et al. Time lapse in situ X-ray imaging of failure in structural materials under cyclic loads and extreme environments [J]. Journal of Materials Science & Technology, 2024, 175: 80–103. DOI: 10.1016/j.jmst.2023.07.041.
    [27]
    WITHERS P J, PREUSS M. Fatigue and damage in structural materials studied by X-ray tomography [J]. Annual Review of Materials Research, 2012, 42: 81–103. DOI: 10.1146/annurev-matsci-070511-155111.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (129) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return