Turn off MathJax
Article Contents
GUO Yazhou, LIU Xiaochuan, BAI Chunyu, WANG Jizhen. Dynamic response characteristics of soft-pack lithium batteries for light consumer drones under mechanical strong impact loads[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0320
Citation: GUO Yazhou, LIU Xiaochuan, BAI Chunyu, WANG Jizhen. Dynamic response characteristics of soft-pack lithium batteries for light consumer drones under mechanical strong impact loads[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0320

Dynamic response characteristics of soft-pack lithium batteries for light consumer drones under mechanical strong impact loads

doi: 10.11883/bzycj-2024-0320
  • Received Date: 2024-08-31
  • Rev Recd Date: 2024-12-03
  • Available Online: 2024-12-04
  • In order to study the dynamic response mode and explosion ignition characteristics of lithium battery in light and small unmanned aerial vehicle (UAV) under high-energy impact, and evaluate the safety performance of lithium battery under dynamic impact, this paper takes the soft-package lithium battery as the research object, and have used the drop-hammer impact and gas gun impact test methods to carry out the drop hammer impact of the soft-package battery pack and the high-velocity impact of the battery on the aluminum plate. The deformation mode and ignition of the soft-package lithium battery under different battery power after impact were studied respectively. Combined with the mechanical deformation response and ignition characteristics of the battery, the impact safety of the small soft-package lithium battery was analyzed. The results show that the ignition risk of small soft-package lithium battery after being impacted by loads in the out-of-plane direction under the conditions of conventional battery shell protection is much higher than that under the condition of out-of-plane load impact. The ignition risk of lithium battery is obviously related to battery power and impact velocity. The thickness of the impacted aluminum plate has little effect on the ignition risk of lithium battery. Due to the buffering effect of the external battery shell, the lithium battery for light and small UAV has a relatively low risk of ignition after an unpredictable heading impact accident at low altitude in the urban environment.
  • loading
  • [1]
    CHEN X, ZOU Q, BAI J, et al. An information integration technology for safety assessment on civil airborne system [J]. Aerospace, 2024, 11(6): 459. DOI: 10.3390/AEROSPACE11060459.
    [2]
    ZHANG H H, TIAN T, FENG O G, et al. Research on public air route network planning of urban low-altitude logistics unmanned aerial vehicles [J]. Sustainability, 2023, 15(15): 12021. DOI: 10.3390/SU151512021.
    [3]
    FAN J J, FAN L L, NI Q H, et al. Perception and planning of intelligent vehicles based on BEV in extreme off-road scenarios [J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(4): 4568–4572. DOI: 10.1109/TIV.2024.3392753.
    [4]
    余莎莎, 陈艺君, 张学军. 城市低空场景下无人机运行对地风险量化评估 [J]. 北京航空航天大学学报, DOI: 10.13700/j.bh.1001-5965.2024.0244.

    YU S S, CHEN Y J, ZHANG X J. Urban low scenario drone operation of quantitative risk assessment [J]. Journal of Beijing University of Aeronautics and Astronautics, DOI: 10.13700/j.bh.1001-5965.2024.0244.
    [5]
    韩鹏, 赵嶷飞, 刘宏. 无人机地面撞击风险评估体系构建及趋势展望 [J]. 中国民航大学学报, 2021, 39(1): 40–47. DOI: 10.3969/j.issn.1674-5590.2021.01.008.

    HAN P, ZHAO Y F, LIU H. Assessment system construction and trend foresight of UAV ground impact risk [J]. Journal of Civil Aviation University of China, 2021, 39(1): 40–47. DOI: 10.3969/j.issn.1674-5590.2021.01.008.
    [6]
    XIA C Y, YANG C R, XUE K, et al. A conflict risk analysis of MAV\UAV Flight in shared airspace [J]. International Journal of Aerospace Engineering, 2021, 2021(1): 1692896. DOI: 10.1155/2021/1692896.
    [7]
    郭亚周, 刘小川, 郭军, 等. 微型无人机和鸟体撞击飞机风挡玻璃对比实验 [J]. 实验力学, 2020, 35(1): 167–173. DOI: 10.7520/1001-4888-18-111.

    GUO Y Z, LIU X C, GUO J, et al. Comparative experiment of aircraft windshield glass subjected to micro-UAV and bird body impact [J]. Journal of Experimental Mechanics, 2020, 35(1): 167–173. DOI: 10.7520/1001-4888-18-111.
    [8]
    MEIER J D. Material characterization of high-voltage lithium-ion battery models for crashworthiness analysis [D]. Cambridge: Massachusetts Institute of Technology, 2013.
    [9]
    ZHANG X W, SAHRAEI E, WANG K. Deformation and failure characteristics of four types of lithium-ion battery separators [J]. Journal of Power Sources, 2016, 327: 693–701. DOI: 10.1016/j.jpowsour.2016.07.078.
    [10]
    朱瑞卿, 胡玲玲, 周名哲. 锂离子电池多次冲击下的失效模式及损伤机制 [J]. 固体力学学报, 2023, 44(6): 795–804. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.032.

    ZHU R Q, HU L L, ZHOU M Z. Failure modes and damage mechanisms of lithium-ion batteries under repeated impacts [J]. Chinese Journal of Solid Mechanics, 2023, 44(6): 795–804. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.032.
    [11]
    JIA Y K, YIN S, LIU B H, et al. Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading [J]. Energy, 2019, 166: 951–960. DOI: 10.1016/j.energy.2018.10.142.
    [12]
    ZHU J E, KOCH M M, LIAN J H, et al. Mechanical deformation of lithium-ion pouch cells under in-plane loads: Part I: experimental investigation [J]. Journal of the Electrochemical Society, 2020, 167(9): 090533. DOI: 10.1149/1945-7111/ab8e83.
    [13]
    PAN Z X, LI W, XIA Y. Experiments and 3D detailed modeling for a pouch battery cell under impact loading [J]. Journal of Energy Storage, 2020, 27: 101016. DOI: 10.1016/j.est.2019.101016.
    [14]
    ZHU J E, LI W, WIERZBICKI T, et al. Deformation and failure of lithium-ion batteries treated as a discrete layered structure [J]. International Journal of Plasticity, 2019, 121: 293–311. DOI: 10.1016/j.ijplas.2019.06.011.
    [15]
    CHEN X P, WANG T, ZHANG Y, et al. Dynamic mechanical behavior of prismatic lithium-ion battery upon impact [J]. International Journal of Energy Research, 2019, 43(13): 7421–7432. DOI: 10.1002/er.4774.
    [16]
    ZHANG X W, WIERZBICKI T. Characterization of plasticity and fracture of shell casing of lithium-ion cylindrical battery [J]. Journal of Power Sources, 2015, 280: 47–56. DOI: 10.1016/j.jpowsour.2015.01.077.
    [17]
    WIERZBICKI T, SAHRAEI E. Homogenized mechanical properties for the jellyroll of cylindrical lithium-ion cells [J]. Journal of Power Sources, 2013, 241: 467–476. DOI: 10.1016/j.jpowsour.2013.04.135.
    [18]
    SAHRAEI E, KAHN M, MEIER J, et al. Modelling of cracks developed in lithium-ion cells under mechanical loading [J]. RSC Advances, 2015, 5(98): 80369–80380. DOI: 10.1039/C5RA17865G.
    [19]
    LI H G, GU J H, PAN Y J, et al. On the strain rate-dependent mechanical behavior of PE separator for lithium-ion batteries [J]. International Journal of Impact Engineering, 2024, 194: 105079. DOI: 10.1016/j.ijimpeng.2024.105079.
    [20]
    LI H G, GU J H, ZHOU D, et al. Rate-dependent damage and failure behavior of lithium-ion battery electrodes [J]. Engineering Fracture Mechanics, 2024, 303: 110143. DOI: 10.1016/j.engfracmech.2024.110143.
    [21]
    LI H G, ZHOU D, ZHANG M H, et al. Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse [J]. Energy, 2023, 263: 126027. DOI: 10.1016/j.energy.2022.126027.
    [22]
    ZHOU D, LI H G, LI Z H, et al. Toward the performance evolution of lithium-ion battery upon impact loading [J]. Electrochimica Acta, 2022, 432: 141192. DOI: 10.1016/j.electacta.2022.141192.
    [23]
    Olivares G. FAA sUAS COE task A3 UAS airborne collision hazard severity evaluation [R]. Washington: FAA, 2017. DOI: 10.13140/RG.2.2.30840.08968.
    [24]
    郭亚周, 刘小川, 白春玉, 等. 轻小型无人机锂离子电池在冲击载荷下机械/电化学耦合失效特性试验 [J]. 科学技术与工程, 2022, 22(31): 14002–14010. DOI: 10.3969/j.issn.1671-1815.2022.31.049.

    GUO Y Z, LIU X C, BAI C Y, et al. Mechanical/electrochemical coupling failure characteristics tests of light and small UAVs lithium battery under impact load [J]. Science Technology and Engineering, 2022, 22(31): 14002–14010. DOI: 10.3969/j.issn.1671-1815.2022.31.049.
    [25]
    MENG X H, SUN Y J, YU J Y, et al. Dynamic response of the horizontal stabilizer during UAS airborne collision [J]. International Journal of Impact Engineering, 2019, 126: 50–61. DOI: 10.1016/j.ijimpeng.2018.11.015.
    [26]
    刘新华, 郭斌, 何瑢, 等. 轻型无人机电池动态冲击性能研究 [J]. 机械工程学报, 2023, 59(2): 177–186. DOI: 10.3901/JME.2023.02.177.

    LIU X H, GUO B, HE R, et al. Research on dynamic impact performance of light-UAV battery [J]. Journal of Mechanical Engineering, 2023, 59(2): 177–186. DOI: 10.3901/JME.2023.02.177.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views (34) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return