• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Volume 45 Issue 2
Feb.  2025
Turn off MathJax
Article Contents
GUO Yazhou, LIU Xiaochuan, BAI Chunyu, WANG Jizhen. Dynamic response characteristics of soft-pack lithium batteries for light-weight consumer drones under mechanical strong impact loads[J]. Explosion And Shock Waves, 2025, 45(2): 021424. doi: 10.11883/bzycj-2024-0320
Citation: GUO Yazhou, LIU Xiaochuan, BAI Chunyu, WANG Jizhen. Dynamic response characteristics of soft-pack lithium batteries for light-weight consumer drones under mechanical strong impact loads[J]. Explosion And Shock Waves, 2025, 45(2): 021424. doi: 10.11883/bzycj-2024-0320

Dynamic response characteristics of soft-pack lithium batteries for light-weight consumer drones under mechanical strong impact loads

doi: 10.11883/bzycj-2024-0320
  • Received Date: 2024-08-31
  • Rev Recd Date: 2024-12-03
  • Available Online: 2024-12-04
  • Publish Date: 2025-02-01
  • This paper takes the soft-package lithium-ion batteries as the research objects to study the dynamic response modes and explosion ignition characteristics of lithium-ion batteries used in light-weight and small consumer unmanned aerial vehicles (UAVs) under high-energy impact and evaluate the safety performances of lithium batteries under dynamic impact. The drop hammer and gas gun were used to carry out the drop-hammer impact of the soft-package battery pack and the high-speed impact of the battery on the aluminum plate. The deformation modes and ignition characteristics of the soft-package lithium-ion batteries under different battery powers after impact were studied. Based on the mechanical deformation response and ignition characteristics of the batteries, the impact safety of small soft-package lithium-ion batteries was analyzed. The results show that the ignition risk of small soft-package lithium-ion batteries under conventional battery shell protection after being impacted by loads in the out-of-plane direction is much higher than that impacted in the in-plane direction. The ignition risk of lithium-ion batteries is related to battery power and impact velocity. The thickness of the impacted aluminum plate has little effect on the ignition risk of lithium-ion batteries. The lithium-ion battery samples used in this study all have a relatively low risk of combustion after impacting the aluminum plate at the velocity of 50 m/s with the state of charge of 100%, and at the velocity of 85 m/s with the states of charge of less than 50%, respectively.
  • loading
  • [1]
    CHEN X, ZOU Q, BAI J, et al. An information integration technology for safety assessment on civil airborne system [J]. Aerospace, 2024, 11(6): 459. DOI: 10.3390/AEROSPACE11060459.
    [2]
    ZHANG H H, TIAN T, FENG O G, et al. Research on public air route network planning of urban low-altitude logistics unmanned aerial vehicles [J]. Sustainability, 2023, 15(15): 12021. DOI: 10.3390/SU151512021.
    [3]
    FAN J J, FAN L L, NI Q H, et al. Perception and planning of intelligent vehicles based on BEV in extreme off-road scenarios [J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(4): 4568–4572. DOI: 10.1109/TIV.2024.3392753.
    [4]
    余莎莎, 陈艺君, 张学军. 城市低空场景下无人机运行对地风险量化评估 [J]. 北京航空航天大学学报, DOI: 10.13700/j.bh.1001-5965.2024.0244.

    YU S S, CHEN Y J, ZHANG X J. Urban low scenario drone operation of quantitative risk assessment [J]. Journal of Beijing University of Aeronautics and Astronautics, DOI: 10.13700/j.bh.1001-5965.2024.0244.
    [5]
    韩鹏, 赵嶷飞, 刘宏. 无人机地面撞击风险评估体系构建及趋势展望 [J]. 中国民航大学学报, 2021, 39(1): 40–47. DOI: 10.3969/j.issn.1674-5590.2021.01.008.

    HAN P, ZHAO Y F, LIU H. Assessment system construction and trend foresight of UAV ground impact risk [J]. Journal of Civil Aviation University of China, 2021, 39(1): 40–47. DOI: 10.3969/j.issn.1674-5590.2021.01.008.
    [6]
    XIA C Y, YANG C R, XUE K, et al. A conflict risk analysis of MAV\UAV flight in shared airspace [J]. International Journal of Aerospace Engineering, 2021, 2021(1): 1692896. DOI: 10.1155/2021/1692896.
    [7]
    郭亚周, 刘小川, 郭军, 等. 微型无人机和鸟体撞击飞机风挡玻璃对比实验 [J]. 实验力学, 2020, 35(1): 167–173. DOI: 10.7520/1001-4888-18-111.

    GUO Y Z, LIU X C, GUO J, et al. Comparative experiment of aircraft windshield glass subjected to micro-UAV and bird body impact [J]. Journal of Experimental Mechanics, 2020, 35(1): 167–173. DOI: 10.7520/1001-4888-18-111.
    [8]
    MEIER J D. Material characterization of high-voltage lithium-ion battery models for crashworthiness analysis [D]. Cambridge: Massachusetts Institute of Technology, 2013.
    [9]
    ZHANG X W, SAHRAEI E, WANG K. Deformation and failure characteristics of four types of lithium-ion battery separators [J]. Journal of Power Sources, 2016, 327: 693–701. DOI: 10.1016/j.jpowsour.2016.07.078.
    [10]
    朱瑞卿, 胡玲玲, 周名哲. 锂离子电池多次冲击下的失效模式及损伤机制 [J]. 固体力学学报, 2023, 44(6): 795–804. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.032.

    ZHU R Q, HU L L, ZHOU M Z. Failure modes and damage mechanisms of lithium-ion batteries under repeated impacts [J]. Chinese Journal of Solid Mechanics, 2023, 44(6): 795–804. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.032.
    [11]
    JIA Y K, YIN S, LIU B H, et al. Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading [J]. Energy, 2019, 166: 951–960. DOI: 10.1016/j.energy.2018.10.142.
    [12]
    ZHU J E, KOCH M M, LIAN J H, et al. Mechanical deformation of lithium-ion pouch cells under in-plane loads: part Ⅰ: experimental investigation [J]. Journal of the Electrochemical Society, 2020, 167(9): 090533. DOI: 10.1149/1945-7111/ab8e83.
    [13]
    PAN Z X, LI W, XIA Y. Experiments and 3D detailed modeling for a pouch battery cell under impact loading [J]. Journal of Energy Storage, 2020, 27: 101016. DOI: 10.1016/j.est.2019.101016.
    [14]
    ZHU J E, LI W, WIERZBICKI T, et al. Deformation and failure of lithium-ion batteries treated as a discrete layered structure [J]. International Journal of Plasticity, 2019, 121: 293–311. DOI: 10.1016/j.ijplas.2019.06.011.
    [15]
    CHEN X P, WANG T, ZHANG Y, et al. Dynamic mechanical behavior of prismatic lithium-ion battery upon impact [J]. International Journal of Energy Research, 2019, 43(13): 7421–7432. DOI: 10.1002/er.4774.
    [16]
    ZHANG X W, WIERZBICKI T. Characterization of plasticity and fracture of shell casing of lithium-ion cylindrical battery [J]. Journal of Power Sources, 2015, 280: 47–56. DOI: 10.1016/j.jpowsour.2015.01.077.
    [17]
    WIERZBICKI T, SAHRAEI E. Homogenized mechanical properties for the jellyroll of cylindrical lithium-ion cells [J]. Journal of Power Sources, 2013, 241: 467–476. DOI: 10.1016/j.jpowsour.2013.04.135.
    [18]
    SAHRAEI E, KAHN M, MEIER J, et al. Modelling of cracks developed in lithium-ion cells under mechanical loading [J]. RSC Advances, 2015, 5(98): 80369–80380. DOI: 10.1039/C5RA17865G.
    [19]
    LI H G, GU J H, PAN Y J, et al. On the strain rate-dependent mechanical behavior of PE separator for lithium-ion batteries [J]. International Journal of Impact Engineering, 2024, 194: 105079. DOI: 10.1016/j.ijimpeng.2024.105079.
    [20]
    LI H G, GU J H, ZHOU D, et al. Rate-dependent damage and failure behavior of lithium-ion battery electrodes [J]. Engineering Fracture Mechanics, 2024, 303: 110143. DOI: 10.1016/j.engfracmech.2024.110143.
    [21]
    LI H G, ZHOU D, ZHANG M H, et al. Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse [J]. Energy, 2023, 263: 126027. DOI: 10.1016/j.energy.2022.126027.
    [22]
    ZHOU D, LI H G, LI Z H, et al. Toward the performance evolution of lithium-ion battery upon impact loading [J]. Electrochimica Acta, 2022, 432: 141192. DOI: 10.1016/j.electacta.2022.141192.
    [23]
    OLIVARES G. FAA sUAS COE task A3 UAS airborne collision hazard severity evaluation [R]. Washington: FAA, 2017. DOI: 10.13140/RG.2.2.30840.08968.
    [24]
    郭亚周, 刘小川, 白春玉, 等. 轻小型无人机锂离子电池在冲击载荷下机械/电化学耦合失效特性试验 [J]. 科学技术与工程, 2022, 22(31): 14002–14010. DOI: 10.3969/j.issn.1671-1815.2022.31.049.

    GUO Y Z, LIU X C, BAI C Y, et al. Mechanical/electrochemical coupling failure characteristics tests of light and small UAVs lithium battery under impact load [J]. Science Technology and Engineering, 2022, 22(31): 14002–14010. DOI: 10.3969/j.issn.1671-1815.2022.31.049.
    [25]
    MENG X H, SUN Y J, YU J Y, et al. Dynamic response of the horizontal stabilizer during UAS airborne collision [J]. International Journal of Impact Engineering, 2019, 126: 50–61. DOI: 10.1016/j.ijimpeng.2018.11.015.
    [26]
    刘新华, 郭斌, 何瑢, 等. 轻型无人机电池动态冲击性能研究 [J]. 机械工程学报, 2023, 59(2): 177–186. DOI: 10.3901/JME.2023.02.177.

    LIU X H, GUO B, HE R, et al. Research on dynamic impact performance of light-UAV battery [J]. Journal of Mechanical Engineering, 2023, 59(2): 177–186. DOI: 10.3901/JME.2023.02.177.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views (122) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return