| Citation: | GUO Yazhou, LIU Xiaochuan, BAI Chunyu, WANG Jizhen. Dynamic response characteristics of soft-pack lithium batteries for light-weight consumer drones under mechanical strong impact loads[J]. Explosion And Shock Waves, 2025, 45(2): 021424. doi: 10.11883/bzycj-2024-0320 | 
	                | [1] | 
					 CHEN X, ZOU Q, BAI J, et al. An information integration technology for safety assessment on civil airborne system [J]. Aerospace, 2024, 11(6): 459. DOI:  10.3390/AEROSPACE11060459. 
						
					 | 
			
| [2] | 
					 ZHANG H H, TIAN T, FENG O G, et al. Research on public air route network planning of urban low-altitude logistics unmanned aerial vehicles [J]. Sustainability, 2023, 15(15): 12021. DOI:  10.3390/SU151512021. 
						
					 | 
			
| [3] | 
					 FAN J J, FAN L L, NI Q H, et al. Perception and planning of intelligent vehicles based on BEV in extreme off-road scenarios [J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(4): 4568–4572. DOI:  10.1109/TIV.2024.3392753. 
						
					 | 
			
| [4] | 
					 余莎莎, 陈艺君, 张学军. 城市低空场景下无人机运行对地风险量化评估 [J]. 北京航空航天大学学报, DOI:  10.13700/j.bh.1001-5965.2024.0244. 
					YU S S, CHEN Y J, ZHANG X J. Urban low scenario drone operation of quantitative risk assessment [J]. Journal of Beijing University of Aeronautics and Astronautics, DOI:  10.13700/j.bh.1001-5965.2024.0244. 
						
					 | 
			
| [5] | 
					 韩鹏, 赵嶷飞, 刘宏. 无人机地面撞击风险评估体系构建及趋势展望 [J]. 中国民航大学学报, 2021, 39(1): 40–47. DOI:  10.3969/j.issn.1674-5590.2021.01.008. 
					HAN P, ZHAO Y F, LIU H. Assessment system construction and trend foresight of UAV ground impact risk [J]. Journal of Civil Aviation University of China, 2021, 39(1): 40–47. DOI:  10.3969/j.issn.1674-5590.2021.01.008. 
						
					 | 
			
| [6] | 
					 XIA C Y, YANG C R, XUE K, et al. A conflict risk analysis of MAV\UAV flight in shared airspace [J]. International Journal of Aerospace Engineering, 2021, 2021(1): 1692896. DOI:  10.1155/2021/1692896. 
						
					 | 
			
| [7] | 
					 郭亚周, 刘小川, 郭军, 等. 微型无人机和鸟体撞击飞机风挡玻璃对比实验 [J]. 实验力学, 2020, 35(1): 167–173. DOI:  10.7520/1001-4888-18-111. 
					GUO Y Z, LIU X C, GUO J, et al. Comparative experiment of aircraft windshield glass subjected to micro-UAV and bird body impact [J]. Journal of Experimental Mechanics, 2020, 35(1): 167–173. DOI:  10.7520/1001-4888-18-111. 
						
					 | 
			
| [8] | 
					 MEIER J D. Material characterization of high-voltage lithium-ion battery models for crashworthiness analysis [D]. Cambridge: Massachusetts Institute of Technology, 2013. 
						
					 | 
			
| [9] | 
					 ZHANG X W, SAHRAEI E, WANG K. Deformation and failure characteristics of four types of lithium-ion battery separators [J]. Journal of Power Sources, 2016, 327: 693–701. DOI:  10.1016/j.jpowsour.2016.07.078. 
						
					 | 
			
| [10] | 
					 朱瑞卿, 胡玲玲, 周名哲. 锂离子电池多次冲击下的失效模式及损伤机制 [J]. 固体力学学报, 2023, 44(6): 795–804. DOI:  10.19636/j.cnki.cjsm42-1250/o3.2023.032. 
					ZHU R Q, HU L L, ZHOU M Z. Failure modes and damage mechanisms of lithium-ion batteries under repeated impacts [J]. Chinese Journal of Solid Mechanics, 2023, 44(6): 795–804. DOI:  10.19636/j.cnki.cjsm42-1250/o3.2023.032. 
						
					 | 
			
| [11] | 
					 JIA Y K, YIN S, LIU B H, et al. Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading [J]. Energy, 2019, 166: 951–960. DOI:  10.1016/j.energy.2018.10.142. 
						
					 | 
			
| [12] | 
					 ZHU J E, KOCH M M, LIAN J H, et al. Mechanical deformation of lithium-ion pouch cells under in-plane loads: part Ⅰ: experimental investigation [J]. Journal of the Electrochemical Society, 2020, 167(9): 090533. DOI:  10.1149/1945-7111/ab8e83. 
						
					 | 
			
| [13] | 
					 PAN Z X, LI W, XIA Y. Experiments and 3D detailed modeling for a pouch battery cell under impact loading [J]. Journal of Energy Storage, 2020, 27: 101016. DOI:  10.1016/j.est.2019.101016. 
						
					 | 
			
| [14] | 
					 ZHU J E, LI W, WIERZBICKI T, et al. Deformation and failure of lithium-ion batteries treated as a discrete layered structure [J]. International Journal of Plasticity, 2019, 121: 293–311. DOI:  10.1016/j.ijplas.2019.06.011. 
						
					 | 
			
| [15] | 
					 CHEN X P, WANG T, ZHANG Y, et al. Dynamic mechanical behavior of prismatic lithium-ion battery upon impact [J]. International Journal of Energy Research, 2019, 43(13): 7421–7432. DOI:  10.1002/er.4774. 
						
					 | 
			
| [16] | 
					 ZHANG X W, WIERZBICKI T. Characterization of plasticity and fracture of shell casing of lithium-ion cylindrical battery [J]. Journal of Power Sources, 2015, 280: 47–56. DOI:  10.1016/j.jpowsour.2015.01.077. 
						
					 | 
			
| [17] | 
					 WIERZBICKI T, SAHRAEI E. Homogenized mechanical properties for the jellyroll of cylindrical lithium-ion cells [J]. Journal of Power Sources, 2013, 241: 467–476. DOI:  10.1016/j.jpowsour.2013.04.135. 
						
					 | 
			
| [18] | 
					 SAHRAEI E, KAHN M, MEIER J, et al. Modelling of cracks developed in lithium-ion cells under mechanical loading [J]. RSC Advances, 2015, 5(98): 80369–80380. DOI:  10.1039/C5RA17865G. 
						
					 | 
			
| [19] | 
					 LI H G, GU J H, PAN Y J, et al. On the strain rate-dependent mechanical behavior of PE separator for lithium-ion batteries [J]. International Journal of Impact Engineering, 2024, 194: 105079. DOI:  10.1016/j.ijimpeng.2024.105079. 
						
					 | 
			
| [20] | 
					 LI H G, GU J H, ZHOU D, et al. Rate-dependent damage and failure behavior of lithium-ion battery electrodes [J]. Engineering Fracture Mechanics, 2024, 303: 110143. DOI:  10.1016/j.engfracmech.2024.110143. 
						
					 | 
			
| [21] | 
					 LI H G, ZHOU D, ZHANG M H, et al. Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse [J]. Energy, 2023, 263: 126027. DOI:  10.1016/j.energy.2022.126027. 
						
					 | 
			
| [22] | 
					 ZHOU D, LI H G, LI Z H, et al. Toward the performance evolution of lithium-ion battery upon impact loading [J]. Electrochimica Acta, 2022, 432: 141192. DOI:  10.1016/j.electacta.2022.141192. 
						
					 | 
			
| [23] | 
					 OLIVARES G. FAA sUAS COE task A3 UAS airborne collision hazard severity evaluation [R]. Washington: FAA, 2017. DOI:  10.13140/RG.2.2.30840.08968. 
						
					 | 
			
| [24] | 
					 郭亚周, 刘小川, 白春玉, 等. 轻小型无人机锂离子电池在冲击载荷下机械/电化学耦合失效特性试验 [J]. 科学技术与工程, 2022, 22(31): 14002–14010. DOI:  10.3969/j.issn.1671-1815.2022.31.049. 
					GUO Y Z, LIU X C, BAI C Y, et al. Mechanical/electrochemical coupling failure characteristics tests of light and small UAVs lithium battery under impact load [J]. Science Technology and Engineering, 2022, 22(31): 14002–14010. DOI:  10.3969/j.issn.1671-1815.2022.31.049. 
						
					 | 
			
| [25] | 
					 MENG X H, SUN Y J, YU J Y, et al. Dynamic response of the horizontal stabilizer during UAS airborne collision [J]. International Journal of Impact Engineering, 2019, 126: 50–61. DOI:  10.1016/j.ijimpeng.2018.11.015. 
						
					 | 
			
| [26] | 
					 刘新华, 郭斌, 何瑢, 等. 轻型无人机电池动态冲击性能研究 [J]. 机械工程学报, 2023, 59(2): 177–186. DOI:  10.3901/JME.2023.02.177. 
					LIU X H, GUO B, HE R, et al. Research on dynamic impact performance of light-UAV battery [J]. Journal of Mechanical Engineering, 2023, 59(2): 177–186. DOI:  10.3901/JME.2023.02.177. 
						
					 |