• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
DONG Qi, LIU Jinghan, LI Lingfeng, GAO Yi, WEI Zhuobin. Damage characteristic of caisson gravity wharf subjected to underwater contact and near-field explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0332
Citation: DONG Qi, LIU Jinghan, LI Lingfeng, GAO Yi, WEI Zhuobin. Damage characteristic of caisson gravity wharf subjected to underwater contact and near-field explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0332

Damage characteristic of caisson gravity wharf subjected to underwater contact and near-field explosion

doi: 10.11883/bzycj-2024-0332
  • Received Date: 2024-09-09
  • Rev Recd Date: 2025-05-29
  • Available Online: 2025-06-04
  • To investigate the damage mechanism and load characteristics of caisson wharf under underwater contact and near-field explosion, a high-fidelity numerical model was conducted based on the scaled model tests of caisson wharf and verified by comparing the simulation results with the experimental data. The propagation and attenuation characteristics of shock waves inside the caisson, partition walls, and internal backfill soil were analyzed. The destruction process and typical damage mechanisms of the caisson wharf were analyzed by comparing Holmquist‒Johnson‒Cook constitutive model damage contour maps with experimental results. The results shows that the damage areas and characteristics of the caisson wharf are largely consistent under both underwater contact and near-field explosion. The primary damage areas are blast-facing wall and deck slab. The blast-facing wall exhibits cratering and breaching phenomena, while of the deck slab shows transverse full-length cracks at trench-slab connections, longitudinal cracks, and blow-off. The side walls and internal partitions of the caisson wharf sustain relatively minor damage. Shock wave within the caisson subjected to underwater contact and near-field explosions undergo reflection and transmission at the interfaces between the partitions and fillings within the compartments. The blast-facing wall and side walls of the wharf are subjected to shock loads. The transmitted compressive waves across the transverse bulkheads and blast-resistant back walls exhibited amplification compared to the incident waves, whereas attenuation was observed as the waves traversed the sand-filled compartments. Numerical simulation results revealed that the shock wave load within the caisson undergoes a decay rate that transitions from rapid to gradual. Damage characteristics of caisson wharf is primarily shaped during the underwater explosion shockwave phase. Neglecting large-scale macroscopic movements such as uplift and scattering post panel failure, the damage formation time slightly exceeds twice the shockwave propagation duration through the structure.
  • loading
  • [1]
    段卫东, 蒋培, 吴亮, 等. 爆炸力学 [M]. 武汉: 华中科技大学出版社, 2023: 90.

    DUAN W D, JIANG P, WU L, et al. Explosion mechanics [M]. Wuhan: Huazhong University of Science Technology Press, 2023: 90.
    [2]
    文彦博, 胡亮亮, 秦健, 等. 近场水下爆炸气泡脉动及水射流的实验与数值模拟研究 [J]. 爆炸与冲击, 2022, 42(5): 053203. DOI: 10.11883/bzycj-2021-0206.

    WEN Y B, HU L L, QIN J, et al. Experimental study and numerical simulation on bubble pulsation and water jet in near-field underwater explosion [J]. Explosion and Shock Waves, 2022, 42(5): 053203. DOI: 10.11883/bzycj-2021-0206.
    [3]
    黄谢平, 孔祥振, 陈祖煜, 等. 近水面、库中、库底水下爆炸荷载作用下混凝土重力坝的破坏模式对比 [J]. 土木工程学报, 2023, 56(3): 116–128. DOI: 10.15951/j.tmgcxb.21121206.

    HUANG X P, KONG X Z, CHEN Z Y, et al. Comparison of failure modes of concrete gravity dams induced by underwater explosion loads near the water free surface, the middle, and the bottom of the reservoir [J]. China Civil Engineering Journal, 2023, 56(3): 116–128. DOI: 10.15951/j.tmgcxb.21121206.
    [4]
    CHEN L M, LI S T, CHEN Y Q, et al. Study on damage effect of caisson wharves subjected to underwater explosion [J]. Ocean Engineering, 2023, 275: 113958. DOI: 10.1016/j.oceaneng.2023.113958.
    [5]
    ZHANG Y, ZHOU Y D, WU H. Influence of water level on RC caisson subjected to underwater explosions [J]. Ocean Engineering, 2022, 266: 113162. DOI: 10.1016/j.oceaneng.2022.113162.
    [6]
    ZHOU Y D, CHENG Y H, CHEN Z Q, et al. Dynamic behaviors of RC caisson subjected to underwater explosions [J]. Marine Structures, 2024, 94: 103568. DOI: 10.1016/j.marstruc.2023.103568.
    [7]
    董琪, 韦灼彬, 唐廷, 等. 港池环境近水面水下爆炸特性及其毁伤效应 [J]. 高压物理学报, 2019, 33(4): 045103. DOI: 10.11858/gywlxb.20180638.

    DONG Q, WEI Z B, TANG T, et al. Loading characteristics and damage effect of near-surface underwater explosion in harbor basin [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045103. DOI: 10.11858/gywlxb.20180638.
    [8]
    刘靖晗, 唐廷, 韦灼彬, 等. 水下接触爆炸下沉箱码头毁伤效应 [J]. 爆炸与冲击, 2020, 40(11): 111407. DOI: 10.11883/bzycj-2019-0378.

    LIU J H, TANG T, WEI Z B, et al. Damage effects of a caisson wharf subjected to underwater contact explosion [J]. Explosion and Shock Waves, 2020, 40(11): 111407. DOI: 10.11883/bzycj-2019-0378.
    [9]
    刘靖晗, 唐廷, 韦灼彬, 等. 沉箱码头在空中和水下爆炸作用下的累积毁伤效应研究 [J]. 振动与冲击, 2024, 43(12): 298–306. DOI: 10.13465/j.cnki.jvs.2024.12.033.

    LIU J H, TANG T, WEI Z B, et al. Cumulative damage effect of the caisson wharf induced by air and underwater explosions [J]. Journal of Vibration and Shock, 2024, 43(12): 298–306. DOI: 10.13465/j.cnki.jvs.2024.12.033.
    [10]
    黄谢平, 孔祥振, 陈祖煜, 等. 水下爆炸对重力坝的毁伤效应及最优爆距 [J]. 爆炸与冲击, 2023, 43(5): 052202. DOI: 10.11883/bzycj-2022-0113.

    HUANG X P, KONG X Z, CHEN Z Y, et al. Damage effects of underwater explosions on gravity dams and optimal standoff distances [J]. Explosion and Shock Waves, 2023, 43(5): 052202. DOI: 10.11883/bzycj-2022-0113.
    [11]
    王高辉, 高政, 卢文波, 等. 考虑初始应力的混凝土重力坝水下爆炸毁伤特性研究 [J]. 振动与冲击, 2022, 41(11): 133–140. DOI: 10.13465/j.cnki.jvs.2022.11.017.

    WANG G H, GAO Z, LU W B, et al. Damage characteristics of underwater explosion of concrete gravity dam considering initial stress [J]. Journal of Vibration and Shock, 2022, 41(11): 133–140. DOI: 10.13465/j.cnki.jvs.2022.11.017.
    [12]
    CHEN L M, LI S T, CHEN Y Q, et al. Study on the dynamic characteristics of pile wharves subjected to underwater explosion [J]. Ocean Engineering, 2024, 291: 116406. DOI: 10.1016/j.oceaneng.2023.116406.
    [13]
    ZHUANG T S, WANG M Y, WU J, et al. Experimental investigation on dynamic response and damage models of circular RC columns subjected to underwater explosions [J]. Defence Technology, 2020, 16(4): 856–875. DOI: 10.1016/j.dt.2019.10.015.
    [14]
    LI Q, WANG G H, LU W B, et al. Failure modes and effect analysis of concrete gravity dams subjected to underwater contact explosion considering the hydrostatic pressure [J]. Engineering Failure Analysis, 2018, 85: 62–76. DOI: 10.1016/j.engfailanal.2017.12.008.
    [15]
    闫秋实, 常松. 水下爆炸三维数值模拟特征参量敏感性分析 [J]. 北京工业大学学报, 2023, 49(10): 1099–1108. DOI: 10.11936/bjutxb2022090043.

    YAN Q S, CHANG S. Underwater explosion 3D numerical simulation characteristic parameter sensitivity analysis [J]. Journal of Beijing University of Technology, 2023, 49(10): 1099–1108. DOI: 10.11936/bjutxb2022090043.
    [16]
    HOLMQUIST T J, JOHNSON G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures [J]. Journal of Applied Mechanics, 2011, 78(5): 051003. DOI: 10.1115/1.4004326.
    [17]
    张凤国, 李恩征. 大应变、高应变率及高压强条件下混凝土的计算模型 [J]. 爆炸与冲击, 2002, 22(3): 198–202. DOI: 10.11883/1001-1455(2002)03-0198-5.

    ZHANG F G, LI E Z. A computational model for concrete subjected to large strains, high strain rates, and high pressures [J]. Explosion and Shock Waves, 2002, 22(3): 198–202. DOI: 10.11883/1001-1455(2002)03-0198-5.
    [18]
    HALLQUIST J O. LS-DYNA® keyword user’s manual: version 971 [R]. Livermore: Livermore Software Technology Corporation, 2013.
    [19]
    孙其然, 李芮宇, 赵亚运, 等. HJC模型模拟钢筋混凝土侵彻实验的参数研究 [J]. 工程力学, 2016, 33(8): 248–256. DOI: 10.6052/j.issn.1000-4750.2014.12.1094.

    SUN Q R, LI R Y, ZHAO Y Y, et al. Investigation on parameters of HJC model applied to simulate perforation experiments of reinforced concrete [J]. Engineering Mechanics, 2016, 33(8): 248–256. DOI: 10.6052/j.issn.1000-4750.2014.12.1094.
    [20]
    姜华, 王君杰. 弹体侵彻混凝土数值模拟失效指标研究 [J]. 振动与冲击, 2009, 28(8): 30–34,197. DOI: 10.3969/j.issn.1000-3835.2009.08.007.

    JIANG H, WANG J J. Investigation on failure index of concrete in the projectile perforation simulation [J]. Journal of Vibration and Shock, 2009, 28(8): 30–34,197. DOI: 10.3969/j.issn.1000-3835.2009.08.007.
    [21]
    顾文彬, 叶序双, 詹发民, 等. 球形装药半无限土介质中爆炸动力学分析 [J]. 工程爆破, 1999, 5(1): 5–10. DOI: 10.3969/j.issn.1006-7051.1999.01.002.

    GU W B, YE X S, ZHAN F M, et al. Dynamic analysis on spherical charges exploding in semi-infinite soil medium [J]. Engineering Blasting, 1999, 5(1): 5–10. DOI: 10.3969/j.issn.1006-7051.1999.01.002.
    [22]
    高洪泉, 卢芳云, 赵宏伟. 不同土壤介质中爆炸的数值模拟 [C]//第六届全国工程结构安全防护学术会议论文集. 洛阳: 中国力学学会爆炸力学专业委员会, 中国土木工程学会防护工程分会, 中国岩石力学与工程学会岩石动力学专业委员会, 2007: 91–96.
    [23]
    董琪, 韦灼彬, 唐廷, 等. 爆炸深度对浅水爆炸气泡脉动的影响 [J]. 高压物理学报, 2018, 32(2): 024102. DOI: 10.11858/gywlxb.20170580.

    DONG Q, WEI Z B, TANG T, et al. Influence of explosion depth on bubble pulsation in shallow water explosion [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 024102. DOI: 10.11858/gywlxb.20170580.
    [24]
    甘露, 陈力, 宗周红, 等. 近距离爆炸比例爆距的界定标准及荷载模型 [J]. 爆炸与冲击, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.

    GAN L, CHEN L, ZONG Z H, et al. Definition of scaled distance of close-in explosion and blast load calculation model [J]. Explosion and Shock Waves, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(7)

    Article Metrics

    Article views (216) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return