• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
XIAO Min, WANG Cheng, YANG Tonghui. Numerical simulation for shock to detonation process of explosive nitromethane containing cavities[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0333
Citation: XIAO Min, WANG Cheng, YANG Tonghui. Numerical simulation for shock to detonation process of explosive nitromethane containing cavities[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0333

Numerical simulation for shock to detonation process of explosive nitromethane containing cavities

doi: 10.11883/bzycj-2024-0333
  • Received Date: 2024-09-09
  • Rev Recd Date: 2025-04-10
  • Available Online: 2025-04-16
  • In order to study the initiation process of liquid explosive nitromethane containing cavities under shock wave loading, an Eulerian multi-material computational approach based on the level set method was developed. The reactive Euler equations were adopted as the governing equations, the level set method was utilized to track the multi-medium interface between the chemical reaction mixture and the cavity. To improve the robustness of calculation method, the modified ghost fluid method was applied in computational cells near the interface. Based on the modified ghost fluid method, a multi-medium problem was transformed into a single media problem. For these two fluid phases on both sides of the interface, the high order weighted essential non-oscillatory finite difference method was implemented to calculate the numerical fluxes on cell boundary, making the simulation results reliable. However, the Jones Wilkins Lee equation of state differs greatly from the ideal gas equation of state. In addition, the mass fraction of detonation product directly affects the transformation process between the conserved variables and the primitive variables in reaction zone, making it difficult to provide an explicit expression for the equation of state of explosive mixture. In order to solve the above problems, a ghost fluid state prediction method based on the HLLC approximate Riemann solver was developed. By dealing with a complex multi-medium Riemann problem considering chemical reaction, the variable states of ghost fluid on both sides of the interface can be obtained. The multi-medium calculation method was used to simulate the interaction problems between liquid nitromethane and the cavity under the loading condition with different impact strengths. The numerical results illustrate that the method proposed in the paper can capture the entire fluid dynamics process of cavity compression, cavity collapse, cavity closure and cavity disappearance.
  • loading
  • [1]
    彭亚晶, 叶玉清. 含能材料起爆过程“热点”理论研究进展 [J]. 化学通报, 2015, 78(8): 693–701. DOI: 10.14159/j.cnki.0441-3776.2015.08.004.

    PENG Y J, YE Y Q. Research progress of ‘hot-spot’ theory in energetic materials initiation [J]. Chemistry, 2015, 78(8): 693–701. DOI: 10.14159/j.cnki.0441-3776.2015.08.004.
    [2]
    MADER C L. Numerical modeling of detonations [M]. Berkeley: University of California Press, 1979.
    [3]
    LAUER E, HU X Y, HICKEL S, et al. Numerical investigation of collapsing cavity arrays [J]. Physics of Fluids, 2012, 24(5): 052104. DOI: 10.1063/1.4719142.
    [4]
    OZLEM M, SCHWENDEMAN D W, KAPILA A K, et al. A numerical study of shock-induced cavity collapse [J]. Shock Waves, 2012, 22(2): 89–117. DOI: 10.1007/s00193-011-0352-9.
    [5]
    KAPILA A K, SCHWENDEMAN D W, GAMBINO J R, et al. A numerical study of the dynamics of detonation initiated by cavity collapse [J]. Shock Waves, 2015, 25(6): 545–572. DOI: 10.1007/s00193-015-0597-9.
    [6]
    KAPAHI A, UDAYKUMAR H S. Dynamics of void collapse in shocked energetic materials: physics of void–void interactions [J]. Shock Waves, 2013, 23(6): 537–558. DOI: 10.1007/s00193-013-0439-6.
    [7]
    MICHAEL L, NIKIFORAKIS N. A hybrid formulation for the numerical simulation of condensed phase explosives [J]. Journal of Computational Physics, 2016, 316: 193–217. DOI: 10.1016/j.jcp.2016.04.017.
    [8]
    XIANG G M, WANG B. Numerical study of a planar shock interacting with a cylindrical water column embedded with an air cavity [J]. Journal of Fluid Mechanics, 2017, 825: 825–852. DOI: 10.1017/jfm.2017.403.
    [9]
    BETNEY M R, ANDERSON P A, DOYLE H, et al. Numerical and experimental study of shock-driven cavity collapse [C]//9th International Symposium on Cavitation (CAV2015). Lausanne: IOP Publishing, 2015: 012011. DOI: 10.1088/1742-6596/656/1/012011.
    [10]
    SUN J, YANG P F, MENG B Q, et al. Effects of micrometer-scale cavities on the shock-to-detonation transition in a heterogeneous LX-17 energetic material [J]. Physics of Fluids, 2023, 35(12): 126117. DOI: 10.1063/5.0174851.
    [11]
    于明. 固体炸药爆轰与惰性介质相互作用的一种扩散界面模型 [J]. 爆炸与冲击, 2020, 40(10): 104202. DOI: 10.11883/bzycj-2019-0435.

    YU M. An improved diffuse interface model for the numerical simulation of interaction between solid explosive detonation and inert media [J]. Explosion and Shock Waves, 2020, 40(10): 104202. DOI: 10.11883/bzycj-2019-0435.
    [12]
    SCHMIDMAYER K, BRYNGELSON S H, COLONIUS T. An assessment of multicomponent flow models and interface capturing schemes for spherical bubble dynamics [J]. Journal of Computational Physics, 2020, 402: 109080. DOI: 10.1016/J.JCP.2019.109080.
    [13]
    XIAO M, NI G X, WANG C, et al. Front capturing by level set method for the reactive Euler equations [J]. International Journal for Numerical Methods in Fluids, 2021, 93(8): 2723–2743. DOI: 10.1002/fld.4995.
    [14]
    KLOPSCH R, GARAN N, BACH E, et al. Parametric influence on rotating detonation combustion: insights from fast reactive Euler simulations [J]. AIAA Journal, 2024, 62(1): 127–139. DOI: 10.2514/1.J063193.
    [15]
    SHYUE K M. An efficient shock-capturing algorithm for compressible multicomponent problems [J]. Journal of Computational Physics, 1998, 142(1): 208–242. DOI: 10.1006/jcph.1998.5930.
    [16]
    SHYUE K M. A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state [J]. Journal of Computational Physics, 1999, 156(1): 43–88. DOI: 10.1006/jcph.1999.6349.
    [17]
    SHYUE K M. A fluid-mixture type algorithm for compressible multicomponent flow with Mie–Grüneisen equation of state [J]. Journal of Computational Physics, 2001, 171(2): 678–707. DOI: 10.1006/jcph.2001.6801.
    [18]
    ZHANG F, CHENG J. A bound-preserving and positivity-preserving high-order arbitrary Lagrangian-Eulerian discontinuous Galerkin method for compressible multi-medium flows [J]. SIAM Journal on Scientific Computing, 2024, 46(3): B254–B279. DOI: 10.1137/23M1588810.
    [19]
    HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. Journal of Computational Physics, 1981, 39(1): 201–225. DOI: 10.1016/0021-9991(81)90145-5.
    [20]
    MULBAH C, KANG C, MAO N, et al. A review of VOF methods for simulating bubble dynamics [J]. Progress in Nuclear Energy, 2022, 154: 104478. DOI: 10.1016/j.pnucene.2022.104478.
    [21]
    TRYGGVASON G, BUNNER B, ESMAEELI A, et al. A front-tracking method for the computations of multiphase flow [J]. Journal of Computational Physics, 2001, 169(2): 708–759. DOI: 10.1006/jcph.2001.6726.
    [22]
    GIBOU F, FEDKIW R, OSHER S. A review of level-set methods and some recent applications [J]. Journal of Computational Physics, 2018, 353: 82–109. DOI: 10.1016/j.jcp.2017.10.006.
    [23]
    姚成宝, 王宏亮, 浦锡锋, 等. 空中强爆炸冲击波地面反射规律数值模拟研究 [J]. 爆炸与冲击, 2019, 39(11): 112201. DOI: 10.11883/bzycj-2018-0287.

    YAO C B, WANG H L, PU X F, et al. Numerical simulation of intense blast wave reflected on rigid ground [J]. Explosion and Shock Waves, 2019, 39(11): 112201. DOI: 10.11883/bzycj-2018-0287.
    [24]
    刘铁钢, 许亮. 模拟多介质界面问题的虚拟流体方法综述 [J]. 气体物理, 2019, 4(2): 1–16. DOI: 10.19527/j.cnki.2096-1642.0746.

    LIU T G, XU L. A review of ghost fluid methods for multi-medium interface simulation [J]. Physics of Gases, 2019, 4(2): 1–16. DOI: 10.19527/j.cnki.2096-1642.0746.
    [25]
    LIU T G, KHOO B C, YEO K S. Ghost fluid method for strong shock impacting on material interface [J]. Journal of Computational Physics, 2003, 190(2): 651–681. DOI: 10.1016/S0021-9991(03)00301-2.
    [26]
    WANG C W, LIU T G, KHOO B C. A real ghost fluid method for the simulation of multimedium compressible flow [J]. Siam Journal on Scientific Computing, 2006, 28(1): 278–302. DOI: 10.1137/030601363.
    [27]
    XU L, FENG C L, LIU T G. Practical techniques in ghost fluid method for compressible multi-medium flows [J]. Communications in Computational Physics, 2016, 20(3): 619–659. DOI: 10.4208/cicp.190315.290316a.
    [28]
    HUO Z X, JIA Z P. A GRP-based tangential effects preserving, high resolution and efficient ghost fluid method for the simulation of two-dimensional multi-medium compressible flows [J]. Computers and Fluids, 2024, 276: 106261. DOI: 10.1016/j.compfluid.2024.106261.
    [29]
    XU L, YANG W B, LIU T G. An interface treatment for two-material multi-species flows involving thermally perfect gases with chemical reactions [J]. Journal of Computational Physics, 2022, 448: 110707. DOI: 10.1016/j.jcp.2021.110707.
    [30]
    ZHAO Z T, RONG J L, ZHANG S X. A numerical study of underwater explosions based on the ghost fluid method [J]. Ocean Engineering, 2022, 247: 109796. DOI: 10.1016/j.oceaneng.2021.109796.
    [31]
    OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations [J]. Journal of Computational Physics, 1988, 79(1): 12–49. DOI: 10.1016/0021-9991(88)90002-2.
    [32]
    FEDKIW R P, ASLAM T, MERRIMAN B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method) [J]. Journal of Computational Physics, 1999, 152(2): 457–492. DOI: 10.1006/jcph.1999.6236.
    [33]
    TORO E F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction [M]. 3rd ed. Heidelberg: Springer Science & Business Media, 2009.
    [34]
    JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes [J]. Journal of Computational Physics, 1996, 126(1): 202–228. DOI: 10.1006/jcph.1996.0130.
    [35]
    WANG C, LIU X Q. High resolution numerical simulation of detonation diffraction of condensed explosives [J]. International Journal of Computational Methods, 2015, 12(2): 1550005. DOI: 10.1142/S021987621550005X.
    [36]
    TURLEY W D, LA LONE B M, MANCE J G, et al. Experimental observations of shock-wave-induced bubble collapse and hot-spot formation in nitromethane liquid explosive [J]. Journal of Applied Physics, 2021, 129(14): 145102. DOI: 10.1063/5.0039414.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)

    Article Metrics

    Article views (105) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return