• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
LIU Hongyan, XUE Lei, ZHANG Guangxiong, WANG Guangbing, WANG Jiyu, HE Tiezhu, ZOU Zongshan. A uniaxial compressive dynamic damage model for rockmass considering the crack roughness[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0335
Citation: LIU Hongyan, XUE Lei, ZHANG Guangxiong, WANG Guangbing, WANG Jiyu, HE Tiezhu, ZOU Zongshan. A uniaxial compressive dynamic damage model for rockmass considering the crack roughness[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0335

A uniaxial compressive dynamic damage model for rockmass considering the crack roughness

doi: 10.11883/bzycj-2024-0335
  • Received Date: 2024-09-10
  • Rev Recd Date: 2024-11-13
  • Available Online: 2024-11-13
  • In order to take into account the influence of the crack roughness, first of all, on basis of the calculation model for the rockmass macroscopic damage variable which can take into account the crack geometry parameter, strength parameter and deformation parameter, a calculation model for the rockmass macroscopic damage variable is proposed by introducing the JRC-JCS shear strength model for the rough crack established by Barton, which can consider the crack roughness. Secondly, the proposed calculation model is introduced into the uniaxial compressive dynamic damage model for the rock mass with the non-persistent crack, which both considers the coupling of the macroscopic and microscopic defects, and then a uniaxial compressive dynamic damage model for the rock mass with the non-persistent crack is established which can consider the crack roughness at the same time. Finally, the effect of crack roughness JRC and crack basic friction angle φb and crack length 2a on rockmass dynamic mechanical property is studied with the parametric sensitivity analysis. The result shows that the rockmass dynamic climax strength increases from 26.42 MPa to 27.28 and 28.37 MPa with JRC increasing from 0 to 10 and 20 respectively. The rockmass dynamic climax strength increases from 26.42 MPa to 27.28 and 28.80 MPa with φb increasing from 0° to 15° and 30° respectively. The rockmass dynamic climax strength decreases from 31.37 MPa to 27.28 and 23.90 MPa with 2a increasing from 1cm to 2 and 3cm respectively. At the same time, in order to describe the influence of the crack roughness more accurately, the crack fractal dimension is introduced into the dynamic damage model for the rock mass, which not only improves the calculation accuracy of the model, but also broadens its application range, which is more convenient for practical engineering application.
  • loading
  • [1]
    LIU H Y, LV S R, ZHANG L M, et al. A dynamic damage constitutive model for a rock mass with persistent joints [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 75: 132–139. DOI: 10.1016/j.ijrmms.2015.01.013.
    [2]
    刘红岩, 杨艳, 李俊峰, 等. 基于TCK模型的非贯通节理岩体动态损伤本构模型 [J]. 爆炸与冲击, 2016, 36(3): 319–325. DOI: 10.11883/1001-1455(2016)03-0319-07.

    LIU H Y, YANG Y, LI J F, et al. Dynamic damage constitutive model for rock mass with non-persistent joints based on the TCK model [J]. Explosion and Shock Waves, 2016, 36(3): 319–325. DOI: 10.11883/1001-1455(2016)03-0319-07.
    [3]
    YAN Z L, DAI F, LIU Y, et al. Experimental investigations of the dynamic mechanical properties and fracturing behavior of cracked rocks under dynamic loading [J]. Bulletin of Engineering Geology and The Environment, 2020, 79(10): 5535–5552. DOI: 10.1007/s10064-020-01914-8.
    [4]
    闻磊, 冯文杰, 李明烨, 等. 应变率对含裂隙红砂岩裂纹扩展模式及破碎特征的影响 [J]. 爆炸与冲击, 2023, 43(11): 113103. DOI: 10.11883/bzycj-2023-0061.

    WEN L, FENG W J, LI M Y, et al. Strain rate effect on crack propagation and fragmentation characteristics of red sandstone containing pre-cracks [J]. Explosion and Shock Waves, 2023, 43(11): 113103. DOI: 10.11883/bzycj-2023-0061.
    [5]
    YUAN G T, ZHANG M W, ZHANG K, et al. Dynamic mechanical response characteristics and cracking behavior of randomly distributed cracked sandstone [J]. Computational Particle Mechanics, 2024, 11(1): 119–139. DOI: 10.1007/s40571-023-00612-y.
    [6]
    JIA Z M, ZHOU X P. Modelling fracture of rock masses around tunnels and slopes by field-enriched finite element method [J]. Computers and Geotechnics, 2023, 163: 105756. DOI: 10.1016/j.compgeo.2023.105756.
    [7]
    KYOYA T, ICHIKAWA Y, KAWAMOTO T. Damage mechanics theory for discontinuous rock mass [C]//Proceedings of the 5th International Conference on Numerical Methods in Geomechanics. Nagoya, 1985: 469–480.
    [8]
    KAWAMOTO T, ICHIKAWA Y, KYOYA T. Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(1): 1–30. DOI: 10.1002/nag.1610120102.
    [9]
    SWOBODA G, SHEN X P, ROSAS L. Damage model for jointed rock mass and its application to tunnelling [J]. Computers and Geotechnics, 1998, 22(3/4): 183–203. DOI: 10.1016/S0266-352X(98)00009-3.
    [10]
    LI N, CHEN W, ZHANG P, et al. The mechanical properties and a fatigue-damage model for jointed rock masses subjected to dynamic cyclical loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 1071–1079. DOI: 10.1016/S1365-1609(01)00058-2.
    [11]
    LIU H Y, ZHANG L M. A damage constitutive model for rock mass with nonpersistently closed joints under uniaxial compression [J]. Arabian Journal for Science and Engineering, 2015, 40(11): 3107–3117. DOI: 10.1007/s13369-015-1777-8.
    [12]
    刘红岩, 李俊峰, 裴小龙. 单轴压缩下断续节理岩体动态损伤本构模型 [J]. 爆炸与冲击, 2018, 38(2): 316–323. DOI: 10.11883/bzycj-2016-0261.

    LIU H Y, LI J F, PEI X L. A dynamic damage constitutive model for rockmass with intermittent joints under uniaxial compression [J]. Explosion and Shock Waves, 2018, 38(2): 316–323. DOI: 10.11883/bzycj-2016-0261.
    [13]
    杨圣奇, 陆家炜, 田文岭, 等. 不同节理粗糙度类岩石材料三轴压缩力学特性试验研究 [J]. 岩土力学, 2018, 39(S1): 21–32. DOI: 10.16285/j.rsm.2017.2293.

    YANG S Q, LU J W, TIAN W L, et al. Experimental study of mechanical behavior of rock specimens with different joint roughness coefficient under conventional triaxial compression [J]. Rock and Soil Mechanics, 2018, 39(S1): 21–32. DOI: 10.16285/j.rsm.2017.2293.
    [14]
    王本鑫, 金爱兵, 赵怡晴, 等. 基于DIC的含3D打印起伏节理试样破裂特性及损伤本构 [J]. 工程科学学报, 2022, 44(12): 2029–2039. DOI: 10.13374/j.issn2095-9389.2021.04.11.001.

    WANG B X, JIN A B, ZHAO Y Q, et al. Fracture characteristics and the damage constitutive model of 3D printing undulating joint samples based on DIC [J]. Chinese Journal of Engineering, 2022, 44(12): 2029–2039. DOI: 10.13374/j.issn2095-9389.2021.04.11.001.
    [15]
    KIM D H, GRATCHEV I, BALASUBRAMANIAM A. Determination of joint roughness coefficient (JRC) for slope stability analysis: a case study from the Gold Coast area, Australia [J]. Landslides, 2013, 10(5): 657–664. DOI: 10.1007/s10346-013-0410-8.
    [16]
    BARTON N. Review of a new shear-strength criterion for rock joints [J]. Engineering Geology, 1973, 7(4): 287–332. DOI: 10.1016/0013-7952(73)90013-6.
    [17]
    谢和平, PARISEAU W G. 岩石节理粗糙系数(JRC)的分形估计 [J]. 中国科学(B辑), 1994, 24(5): 524–530.

    XIE H P, PARISEAU W G. The fractal estimation of rock joint roughness coefficient [J]. Science in China (Series B), 1994, 24(5): 524–530.
    [18]
    陈世江, 朱万成, 王创业, 等. 岩体结构面粗糙度系数定量表征研究进展 [J]. 力学学报, 2017, 49(2): 239–256. DOI: 10.6052/0459-1879-16-255.

    CHEN S J, ZHU W C, WANG C Y, et al. Review of research progresses of the quantifying joint roughness coefficient [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 239–256. DOI: 10.6052/0459-1879-16-255.
    [19]
    TAYLOR L M, CHEN E P, KUSZMAUL J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3): 301–320. DOI: 10.1016/0045-7825(86)90057-5.
    [20]
    GRADY D E, KIPP M E. Continuum modelling of explosive fracture in oil shale [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1980, 17(3): 147–157. DOI: 10.1016/0148-9062(80)91361-3.
    [21]
    贺红亮. 冲击波极端条件下脆性介质的力学响应特性及其细观结构破坏特征 [D]. 绵阳: 中国工程物理研究院, 1999.

    HE H L. Mechanical response and microstructure failure characteristics of brittle medium under extreme shock wave conditions (Doctoral dissertation) [D]. Mianyang: China Academy of Engineering Physics, 1999.
    [22]
    LIU T Y, CAO P, LIN H. Damage and fracture evolution of hydraulic fracturing in compression-shear rock cracks [J]. Theoretical and Applied Fracture Mechanics, 2014, 74: 55–63. DOI: 10.1016/j.tafmec.2014.06.013.
    [23]
    LEE S, RAVICHANDRAN G. Crack initiation in brittle solids under multiaxial compression [J]. Engineering Fracture Mechanics, 2003, 70(13): 1645–1658. DOI: 10.1016/S0013-7944(02)00203-5.
    [24]
    HUANG C Y, SUBHASH G, VITTON S J. A dynamic damage growth model for uniaxial compressive response of rock aggregates [J]. Mechanics of Materials, 2002, 34(5): 267–277. DOI: 10.1016/S0167-6636(02)00112-6.
    [25]
    HUANG C Y, SUBHASH G. Influence of lateral confinement on dynamic damage evolution during uniaxial compressive response of brittle solids [J]. Journal of the Mechanics and Physics of Solids, 2003, 51(6): 1089–1105. DOI: 10.1016/S0022-5096(03)00002-4.
    [26]
    范景伟, 何江达. 含定向闭合断续节理岩体的强度特性 [J]. 岩石力学与工程学报, 1992, 11(2): 190–199.

    FAN J W, HE J D. The strength behavior of rockmasses containing oriented and closed intermittent joints [J]. Chinese Journal of Rock Mechanics and Engineering, 1992, 11(2): 190–199.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (117) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return