Citation: | HU Xuelong, WANG Yixian, YIN Zuoming, ZHANG Ming, GUO Panpan, YIN Zhiqiang, ZHANG Xiangyang. Study on the damage constitutive model of rock considering the influence of dynamic ratio of tension to compression[J]. Explosion And Shock Waves, 2025, 45(6): 061412. doi: 10.11883/bzycj-2024-0336 |
[1] |
HUANG X P, KONG X Z, CHEN Z Y, et al. A computational constitutive model for rock in hydrocode [J]. International Journal of Impact Engineering, 2020, 145: 103687. DOI: 10.1016/j.ijimpeng.2020.103687.
|
[2] |
胡学龙. 基于统一强度理论的岩石动态损伤模型研究 [D]. 北京: 北京科技大学, 2020. DOI: 10.26945/d.cnki.gbjku.2020.000096.
HU X L. Study of rock dynamic damage model based on unified strength theory [D]. Beijing: University of Science and Technology Beijing, 2020. DOI: 10.26945/d.cnki.gbjku.2020.000096.
|
[3] |
AI H A, AHRENS T J. Simulation of dynamic response of granite: a numerical approach of shock-induced damage beneath impact craters [J]. International Journal of Impact Engineering, 2006, 33(1): 1−10. DOI: 10.1016/j.ijimpeng.2006.09.046.
|
[4] |
BANADAKI M M D, MOHANTY B. Numerical simulation of stress wave induced fractures in rock [J]. International Journal of Impact Engineering, 2012, 40/41: 16–25. DOI: 10.1016/j.ijimpeng.2011.08.010.
|
[5] |
HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures [C]// Proceedings of the 14th International Symposium on Ballistics. Quebec: ADPA, 1993: 591−600. DOI: 10.1115/1.4004326.
|
[6] |
MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/s0734-743x(97)00023-7.
|
[7] |
RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]//Proceedings of the 9th International Symposium on Interaction of the Effects of Munitions with Structures. Berlin Strausberg: ISIEMS, 1999: 315-322.
|
[8] |
MURRAY Y D. Users manual for LS-DYNA concrete material model 159: FHWA-HRT-05-062 [R]. McLean: U. S. Department Transportation Federal Highway Administration, 2007.
|
[9] |
POLANCO-LORIA M, HOPPERSTAD O S, BØRVIK T, et al. Numerical predictions of ballistic limits for concrete slabs using a modified version of the HJC concrete model [J]. International Journal of Impact Engineering, 2008, 35(5): 290–303. DOI: 10.1016/j.ijimpeng.2007.03.001.
|
[10] |
KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228. DOI: 10.1016/j.ijimpeng.2017.02.016.
|
[11] |
JIANG H, ZHAO J D. Calibration of the continuous surface cap model for concrete [J]. Finite Elements in Analysis and Design, 2015, 97: 1–19. DOI: 10.1016/j.finel.2014.12.002.
|
[12] |
凌天龙, 王宇涛, 刘殿书, 等. 修正RHT模型在岩体爆破响应数值模拟中的应用 [J]. 煤炭学报, 2018, 43(S2): 434–442. DOI: 10.13225/j.cnki.jccs.2017.1698.
LING T L, WANG Y T, LIU D S, et al. Modified RHT model for numerical simulation of dynamic response of rock mass under blasting load [J]. Journal of China Coal Society, 2018, 43(S2): 434–442. DOI: 10.13225/j.cnki.jccs.2017.1698.
|
[13] |
YANG L, WANG G S, ZHAO G F, et al. A rate-and pressure-dependent damage-plasticity constitutive model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 104394. DOI: 10.1016/j.ijrmms.2020.104394.
|
[14] |
LI H Y, SHI G Y. A dynamic material model for rock materials under conditions of high confining pressures and high strain rates [J]. International Journal of Impact Engineering, 2016, 89: 38–48. DOI: 10.1016/j.ijimpeng.2015.11.004.
|
[15] |
KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
|
[16] |
胡学龙, 璩世杰, 李克庆. 基于统一强度理论的岩石弹塑性损伤模型研究 [J]. 中国矿业大学学报, 2019, 48(2): 305–312. DOI: 10.13247/j.cnki.jcumt.000985.
HU X L, QU S J, LI K Q. Study of rock elastoplastic constitutive damage model based on the unified strength theory [J]. Journal of China University of Mining & Technology, 2019, 48(2): 305–312. DOI: 10.13247/j.cnki.jcumt.000985.
|
[17] |
谢福君, 张家生, 陈俊桦. 冲击荷载作用下岩石压动态和拉动态损伤模型 [J]. 中南大学学报(自然科学版), 2019, 50(2): 420–427. DOI: 10.11817/j.issn.1672-7207.2019.02.022.
XIE F J, ZHANG J S, CHEN J H. Dynamic damage model of rock under impact loads of compression and tension [J]. Journal of Central South University (Science and Technology), 2019, 50(2): 420–427. DOI: 10.11817/j.issn.1672-7207.2019.02.022.
|
[18] |
江雅勤, 吴帅峰, 刘殿书, 等. 基于元件组合理论的砂岩动态损伤本构模型 [J]. 爆炸与冲击, 2018, 38(4): 827–833. DOI: 10.11883/bzycj-2017-0173.
JIANG Y Q, WU S F, LIU D S, et al. Dynamic damage constitutive model of sandstone based on component combination theory [J]. Explosion and Shock Waves, 2018, 38(4): 827–833. DOI: 10.11883/bzycj-2017-0173.
|
[19] |
SHU Y, ZHU Z M, WANG M, et al. A plastic damage constitutive model for rock-like material focusing on the hydrostatic pressure induced damage and the interaction of tensile and shear damages under impact and blast loads [J]. Computers and Geotechnics, 2022, 150: 104921. DOI: 10.1016/j.compgeo.2022.104921.
|
[20] |
HUANG L C, LIANG J G, MA J J, et al. A dynamic bounding surface plasticity damage model for rocks subjected to high strain rates and confinements [J]. International Journal of Impact Engineering, 2022, 168: 104306. DOI: 10.1016/j.ijimpeng.2022.104306.
|
[21] |
XU X, CHI L Y, YU Q, et al. An elastoplastic damage constitutive model for capturing dynamic enhancement effect of rock and concrete through equivalent stress history [J]. International Journal of Impact Engineering, 2023, 181: 104736. DOI: 10.1016/j.ijimpeng.2023.104736.
|
[22] |
YU M H, HE L N. A new model and theory on yield and failure of materials under the complex stress state [J]. Mechanical Behaviour of Materials VI, 1992: 841-846. DOI: 10.1016/B978-0-08-037890-9.50389-6.
|
[23] |
YU M H, ZAN Y W, ZHAO J, et al. A unified strength criterion for rock material [J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(8): 975–989. DOI: 10.1016/S1365-1609(02)00097-7.
|
[24] |
SI X F, GONG F Q, LI X B, et al. Dynamic Mohr-Coulomb and Hoek-Brown strength criteria of sandstone at high strain rates[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 115: 48–59. DOI: 10.1016/j.ijrmms.2018.12.013.
|
[25] |
ALVES M. Material constitutive law for large strains and strain rates [J]. Journal of Engineering Mechanics, 2000, 126(2): 215–218. DOI: 10.1061/(ASCE)0733-9399(2000)126:2(215).
|
[26] |
XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76–81. DOI: 10.1016/j.ijimpeng.2013.04.005.
|
[27] |
KAMRAN, IQBAL M A. A new material model for concrete subjected to high rate of loading [J]. International Journal of Impact Engineering, 2023, 180: 104673. DOI: 10.1016/j.ijimpeng.2023.104673.
|
[28] |
OKUBO S, FUKUI K. Complete stress-strain curves for various rock types in uniaxial tension [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996, 33(6): 549–556. DOI: 10.1016/0148-9062(96)00024-1.
|
[29] |
OKUBO S, FUKUI K, QI Q X. Uniaxial compression and tension tests of anthracite and loading rate dependence of peak strength [J]. International Journal of Coal Geology, 2006, 68(3/4): 196–204. DOI: 10.1016/j.coal.2006.02.004.
|
[30] |
HU X L, ZHANG M, ZHANG X Y, et al. A coupled elastoplastic damage dynamic model for rock [J]. Shock and Vibration, 2021, 2021: 5567019. DOI: 10.1155/2021/5567019.
|
[31] |
YU M H, YANG S Y, FAN S C, et al. Unified elasto-plastic associated and non-associated constitutive model and its engineering applications [J]. Computers & Structures, 1999, 71(6): 627–636. DOI: 10.1016/s0045-7949(98)00306-x.
|
[32] |
DE BORST R, CRISFIELD M A, REMMERS J J C, et al. Non-linear finite element analysis of solids and structures [M]. 2nd ed. Hoboken: John Wiley & Sons, 2012.
|
[33] |
WAWERSIK W R, FAIRHURST C. A study of brittle rock fracture in laboratory compression experiments [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1970, 7(5): 561–575. DOI: 10.1016/0148-9062(70)90007-0.
|
[34] |
SEAH C C, BØRVIK T, REMSET S, et al. Penetration and perforation of rock targets by hard projectiles [M]//ZHOU Y X, ZHAO J. Advances in Rock Dynamics and Applications. Boca Raton: CRC Press, 2011.
|