Citation: | ZHOU Xin, FENG Bin, CHEN Li. Study on failure zones and attenuation law of stress waves in concrete induced by cylindrical charge explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0350 |
[1] |
KRAUTHAMMER T. Modern protective structures [M]. Boca Raton: CRC Press, 2008. DOI: 10.1201/9781420015423.
|
[2] |
PLOOSTER M N. Blast effects from cylindrical explosive charges: experimental measurements [M]. Fort Belvoir: Defense Technical Information Center, 1982: 11–18. .
|
[3] |
ISMAIL M M, MURRAY S G. Study of the blast waves from the explosion of nonspherical charges [J]. Propellants, Explosives, Pyrotechnics, 1993, 18(3): 132–138. DOI: 10.1002/prep.19930180304.
|
[4] |
WU C Q, FATTORI G, WHITTAKER A, et al. Investigation of air-blast effects from spherical-and cylindrical-shaped charges [J]. International Journal of Protective Structures, 2010, 1(3): 345–362. DOI: 10.1260/2041-4196.1.3.345.
|
[5] |
SHI Y C, WANG N, CUI J, et al. Experimental and numerical investigation of charge shape effect on blast load induced by near-field explosions [J]. Process Safety and Environmental Protection, 2022, 165: 266–277. DOI: 10.1016/j.psep.2022.07.018.
|
[6] |
黄家蓉, 刘光昆, 吴飚, 等. 爆炸冲击作用下混凝土中动态应力波测试与模拟 [J]. 防护工程, 2020, 42(4): 23–28. DOI: 10.3969/j.issn.1674-1854.2020.04.003.
HUANG J R, LIU G K, WU B, et al. Testing and simulation of dynamic stress wave in concrete under explosion and impact [J]. Protective Engineering, 2020, 42(4): 23–28. DOI: 10.3969/j.issn.1674-1854.2020.04.003.
|
[7] |
GEBBEKEN N, GREULICH S, PIETZSCH A. Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact tests [J]. International Journal of Impact Engineering, 2006, 32(12): 2017–2031. DOI: 10.1016/j.ijimpeng.2005.08.003.
|
[8] |
SHERKAR P, SHIN J, WHITTAKER A, et al. Influence of charge shape and point of detonation on blast-resistant design [J]. Journal of Structural Engineering, 2016, 142(2): 04015109. DOI: 10.1061/(ASCE)ST.1943-541X.0001371.
|
[9] |
XIAO W F, ANDRAE M, GEBBEKEN N. Effect of charge shape and initiation configuration of explosive cylinders detonating in free air on blast-resistant design [J]. Journal of Structural Engineering, 2020, 146(8): 04020146. DOI: 10.1061/(ASCE)ST.1943-541X.0002694.
|
[10] |
GAO C, KONG X Z, FANG Q, et al. Numerical investigation on free air blast loads generated from center-initiated cylindrical charges with varied aspect ratio in arbitrary orientation [J]. Defence Technology, 2022, 18(9): 1662–1678. DOI: 10.1016/j.dt.2021.07.013.
|
[11] |
王明涛, 程月华, 吴昊. 柱形装药空中爆炸冲击波荷载研究 [J]. 爆炸与冲击, 2024, 44(4): 043201. DOI: 10.11883/bzycj-2023-0197.
WANG M T, CHENG Y H, WU H. Study on blast loadings of cylindrical charges air explosion [J]. Explosion and Shock Waves, 2024, 44(4): 043201. DOI: 10.11883/bzycj-2023-0197.
|
[12] |
GAO C, KONG X Z, FANG Q. Experimental and numerical investigation on the attenuation of blast waves in concrete induced by cylindrical charge explosion [J]. International Journal of Impact Engineering, 2023, 174: 104491. DOI: 10.1016/j.ijimpeng.2023.104491.
|
[13] |
高矗, 孔祥振, 方秦, 等. 混凝土中爆炸应力波衰减规律的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.
GAO C, KONG X Z, FANG Q, et al. Numerical study on attenuation of stress wave in concrete subjected to explosion [J]. Explosion and Shock Waves, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.
|
[14] |
杨耀宗, 孔祥振, 方秦, 等. 混凝土中带壳柱形装药爆炸应力波衰减规律的数值模拟 [J]. 爆炸与冲击, 2024, 44(11): 112202. DOI: 10.11883/bzycj-2023-0342.
YANG Y Z, KONG X Z, FANG Q, et al. Numerical investigation on attenuation of stress waves in concrete induced by cylindrical cased charge explosion [J]. Explosion and Shock Waves, 2024, 44(11): 112202. DOI: 10.11883/bzycj-2023-0342.
|
[15] |
吴祥云, 曲建波, 张光明, 等. 岩石中不同埋深爆炸自由场直接地冲击参数的预计方法 [C]//崔京浩. 第20届全国结构工程学术会议论文集(第Ⅰ册). 《工程力学》杂志社, 2011: 262–267. .
WU X Y, QU J B, ZHANG G M, et al. Prediction method of the direct ground shock parameters of explosion at different buried depths in free field of rock [C]//CUI J H. Proceedings of the Twentieth National Conference on Structural Engineering (No. I). Engineering Mechanics Magazine, 2011: 262–267.
|
[16] |
LIU Z Y, ZHAI J Z, SU S. Numerical simulation on conical shaped charge with copper liner in several typical shapes [J]. Materials Research Proceedings, 2019, 13(3): 7–12. DOI: 10.21741/9781644900338-2.
|
[17] |
ABIR M, ARUMUGAM D, DHANA B, et al. Numerical simulation of blast wave propagation in layered soil featuring soil-structure interaction [C]// COMPDYN. Proceedings of the 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering. Rhodes Island, 2017: 4752–4765. DOI: 10.7712/120117.5759.16936..
|
[18] |
KULAK R F, BOJANOWSKI C. Modeling of cone penetration test using SPH and MM-ALE approaches [C]// Ansys Company. Proceedings of the 8th European LS-DYNA® Users Conference. Strasbourg, 2011: 1–10. .
|
[19] |
VAN DORSSELAER N, LAPOUJADE V. A contribution to new ALE 2D method validation [C]// Ansys Company. Proceedings of the 11th International LS-DYNA® Users Conference. Dearborn, 2010: 39–50. .
|
[20] |
MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7.
|
[21] |
TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010.
|
[22] |
匡志平, 陈少群. 混凝土K&C模型材料参数分析与模拟 [J]. 力学季刊, 2015, 36(3): 517–526. DOI: 10.15959/j.cnki.0254-0053.2015.03.019.
KUANG Z P, CHEN S Q. Analysis and simulation for the material parameters of K&C concrete model [J]. Chinese Quarterly of Mechanics, 2015, 36(3): 517–526. DOI: 10.15959/j.cnki.0254-0053.2015.03.019.
|
[23] |
SU Q, WU H, FANG Q. Calibration of KCC model for UHPC under impact and blast loadings [J]. Cement and Concrete Composites, 2022, 127: 104401. DOI: 10.1016/j.cemconcomp.2021.104401.
|
[24] |
KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228.(请核实作者信息). DOI: 10.1016/j.ijimpeng.2017.02.016.
KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228.(请核实作者信息). doi: 10.1016/j.ijimpeng.2017.02.016
|
[25] |
XIAO W F, ANDRAE M, GEBBEKEN N. Air blast TNT equivalence factors of high explosive material PETN for bare charges [J]. Journal of Hazardous Materials, 2019, 377: 152–162. DOI: 10.1016/j.jhazmat.2019.05.078.
|
[26] |
甘露, 陈力, 宗周红, 等. 近距离爆炸比例爆距的界定标准及荷载模型 [J]. 爆炸与冲击, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.
GAN L, CHEN L, ZONG Z H, et al. Definition of scaled distance of close-in explosion and blast load calculation model [J]. Explosion and Shock Waves, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.
|
[27] |
HOPKINSON B. British ordnance board minutes [J]. Journal of the Society for Army Historical Research, 1915, 230(57): 88–107.
|
[28] |
TU H, FUNG T C, TAN K H, et al. An analytical model to predict the compressive damage of concrete plates under contact detonation [J]. International Journal of Impact Engineering, 2019, 134: 103344. DOI: 10.1016/j.ijimpeng.2019.103344.
|
[29] |
刘琦, 翟超辰, 张跃飞, 等. 地面和埋置爆炸土中地冲击作用分区数值模拟及试验研究 [J]. 爆炸与冲击, 2022, 42(8): 082201. DOI: 10.11883/bzycj-2021-0326.
LIU Q, ZHAI C C, ZHANG Y F, et al. Numerical simulation and test study on ground shock subzones in soil produced by ground and buried explosion [J]. Explosion and Shock Waves, 2022, 42(8): 082201. DOI: 10.11883/bzycj-2021-0326.
|
[30] |
FORBES J W. Shock wave compression of condensed matter: a primer [M]. Berlin: Springer, 2012.
|
[31] |
DOBRATZ B M. LLNL explosives handbook: properties of chemical explosives and explosives and explosive simulants: UCRL-52997 [R]. Lawrence: Livermore National Laboratory, 1981.
|
[32] |
郑哲敏, 解伯民, 刘育魁, 等. 地下核爆炸流体弹塑性计算方案和若干结果 [M]//郑哲敏. 郑哲敏文集. 北京: 科学出版社, 2004.
ZHENG Z M, XIE B M, LIU Y K, et al. Fluid-plastic calculation scheme and some results of underground nuclear explosion [M]//ZHENG Z M. Beijing: Science Press, 2004.
|
[33] |
郑哲敏. 爆炸成形模型律 [M]. 北京: 科学出版社, 2004.
ZHENG Z M. Explosion forming model law [M]. Beijing: Science Press, 2004.
|
[34] |
李守巨, 何庆志, 费鸿禄. 岩石爆破破坏分区的研究 [J]. 爆破, 1991(1): 16–19.
LI S J, HE Q Z, FEI H L. Research on the division of rock blasting damage zones [J]. Blasting, 1991(1): 16–19.
|
[35] |
钱七虎, 王明洋. 岩土中的冲击爆炸效应 [M]. 北京: 国防工业出版社, 2010.
QIAN Q H, WANG M Y. Impact and explosion effects in rock and soil [M]. Beijing: National Defense Industry Press, 2010.
|
[36] |
王明洋, 邓宏见, 钱七虎. 岩石中侵彻与爆炸作用的近区问题研究 [J]. 岩石力学与工程学报, 2005, 24(16): 2859–2863. DOI: 10.3321/j.issn:1000-6915.2005.16.008.
WANG M Y, DENG H J, QIAN Q H. Study on problems of near cavity of penetration and explosion in rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2859–2863. DOI: 10.3321/j.issn:1000-6915.2005.16.008.
|
[37] |
张志呈. 定向断裂控制爆破机理综述 [J]. 矿业研究与开发, 2000, 20(5): 40–42. DOI: 10.3969/j.issn.1005-2763.2000.05.015.
ZHANG Z C. Summary of the mechanism of directional fracture controlled blasting [J]. Mining Research and Development, 2000, 20(5): 40–42. DOI: 10.3969/j.issn.1005-2763.2000.05.015.
|
[38] |
冷振东. 岩石爆破中爆炸能量的释放与传输机制 [D]. 武汉: 武汉大学, 2017.
LENG Z D. Explosion energy release and transmission mechanism in rock blasting [D]. Wuhan: Wuhan University, 2017.
|
[39] |
MANDAL J, GOEL M D, AGARWAL A K. Surface and buried explosions: an explorative review with recent advances [J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4815–4835. DOI: 10.1007/s11831-021-09553-2.
|
[40] |
AMELSFORT R, WEERHEIJM J T. The failure mode of concrete slabs due to contact charges [R]. John Wiley & Sons, 1994.
|
[41] |
SALAMI M R. Analytical expressions for uniaxial tensile strength of concrete in terms of uniaxial compressive strength [J]. Transportation Research Record, 1992(1335): 52–54.
|
[42] |
宋守志. 条形药包爆炸时的高速冲击效应 [C]//第四届全国岩石破碎学术讨论会论文集. 成都: 中国岩石力学与工程学会, 中国金属学会采矿学会, 中国土木工程学会隧道及地下工程学会, 1989: 4.
SONG S Z. High-speed impact effects of linear charge explosion [C]// Proceedings of the 4th National Symposium on Rock Fragmentation. Chengdu: Chinese Society for Rock Mechanics and Engineering, Chinese Society of Metals Mining Society, Chinese Society of Civil Engineering Tunnel and Underground Engineering Society, 1989: 4.
|
[43] |
王明洋, 李杰, 邓国强. 超高速动能武器钻地毁伤效应与工程防护 [M]. 北京 : 科学出版社, 2021.
WANG M Y, LI J, DENG G Q. Penetration and destruction effects of hypervelocity kinetic energy weapons and engineering protection [M]. Beijing: Science Press, 2021.
|
[44] |
李重情, 穆朝民, 石必明. 变埋深条件下混凝土中爆炸应力传播规律的研究 [J]. 振动与冲击, 2017, 36(6): 140–145. DOI: 10.13465/j.cnki.jvs.2017.07.021.
LI Z Q, MU C M, SHI B M. Investigate on shock stress propagation in concrete at different depths under blasting [J]. Journal of Vibration and Shock, 2017, 36(6): 140–145. DOI: 10.13465/j.cnki.jvs.2017.07.021.
|
[45] |
MU C M, ZHOU H, MA H F. Prediction method for ground shock parameters of explosion in concrete [J]. Construction and Building Materials, 2021, 291: 123372. DOI: 10.1016/j.conbuildmat.2021.123372.
|
[46] |
LEONG E C, ANAND S, CHEONG H K, et al. Re-examination of peak stress and scaled distance due to ground shock [J]. International Journal of Impact Engineering, 2007, 34(9): 1487–1499. DOI: 10.1016/j.ijimpeng.2006.10.009.
|
[47] |
YANKELEVSKY D Z, KARINSKI Y S, FELDGUN V R. Re-examination of the shock wave’s peak pressure attenuation in soils [J]. International Journal of Impact Engineering, 2011, 38(11): 864–881. DOI: 10.1016/j.ijimpeng.2011.05.011.
|
[48] |
FAN Y, CHEN L, LI Z, et al. Modeling the blast load induced by a close-in explosion considering cylindrical charge parameters [J]. Defence Technology, 2023, 24: 83–108. DOI: 10.1016/j.dt.2022.02.005.
|
[49] |
US Army Engineer Waterways Experiment Station. Fundamentals of protective design for conventional weapons [M]. Washington: US Department of the Army, 1986.
|