Turn off MathJax
Article Contents
SHU Conghao, YANG Cheng, TONG Weihao, LI Jie, LIU Binghe. Deformation and collision monitoring of lithium-ion batteries based on ultrasonic guided wave signals[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0351
Citation: SHU Conghao, YANG Cheng, TONG Weihao, LI Jie, LIU Binghe. Deformation and collision monitoring of lithium-ion batteries based on ultrasonic guided wave signals[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0351

Deformation and collision monitoring of lithium-ion batteries based on ultrasonic guided wave signals

doi: 10.11883/bzycj-2024-0351
  • Received Date: 2024-09-19
  • Rev Recd Date: 2024-11-21
  • Available Online: 2024-11-25
  • As lithium-ion batteries are widely used in the industry represented by electric vehicles, their collision-induced safety problems have aroused widespread concern in the industry and society. Under the collision condition of electric vehicles, on the one hand, the deformation of the battery will lead to direct fire and explosion, and on the other hand, the unknown deformation of the battery caused by the collision will bring safety risks to the subsequent use. For the unknown deformation of batteries after collision, abnormal batteries are only sensed by physical signals such as voltage, temperature and current, and there is no direct monitoring method for battery deformation. To bridge this gap, this paper uses small piezoelectric plates and realizes deformation and collision monitoring of lithium-ion batteries based on ultrasonic guided waves. Firstly, an experimental platform for different loads of lithium-ion batteries was built, and quasi-static and micro-collision experiments were carried out. Further, the experimental results were analyzed and discussed to clarify the change law of ultrasonic signal under different loads. The results showed that: in the quasi-static battery experiment, the ultrasonic amplitude signal was negatively correlated with the deformation degree of the battery. When the battery was subjected to gradually increasing load and the deformation became more serious, the amplitude would gradually decrease; when the battery was deformed to failure, the amplitude signal would also drop instantaneously. In ball-dropped experiment, the impact deformation will affect the change of amplitude and energy integration of the ultrasonic signal, which can be used as a basis to judge whether the battery collision occurs. Finally, the mapping relationship between ultrasonic and battery deformation failure monitoring under large deformation is established, and the criteria based on ultrasonic sensor under collision deformation is proposed. The results of this paper propose a new method for the safety monitoring of lithium-ion batteries, which is expected to be applied in electric vehicles and other fields.
  • loading
  • [1]
    LIU Y, PAN Y J, WANG H C, et al. Mechanical issues of lithium-ion batteries in road traffic conditions: a review [J]. Thin-Walled Structures, 2024, 201: 111985. DOI: 10.1016/j.tws.2024.111985.
    [2]
    CHOMBO P V, LAOONUAL Y. A review of safety strategies of a Li-ion battery [J]. Journal of Power Sources, 2020, 478: 228649. DOI: 10.1016/j.jpowsour.2020.228649.
    [3]
    LIU B H, ZHAO H, YU H L, et al. Multiphysics computational framework for cylindrical lithium-ion batteries under mechanical abusive loading [J]. Electrochimica Acta, 2017, 256: 172–84. DOI: 10.1016/j.electacta.2017.10.045.
    [4]
    HU L L, ZHANG Z W, ZHOU M Z, et al. Crushing behaviors and failure of packed batteries [J]. International Journal of Impact Engineering, 2020, 143: 103618. DOI: 10.1016/j.ijimpeng.2020.103618.
    [5]
    LIU B H, JIA Y K, LI J N, et al. Multiphysics coupled computational model for commercialized Si/graphite composite anode [J]. Journal of Power Sources, 2020, 450: 227667. DOI: 10.1016/j.jpowsour.2019.227667.
    [6]
    LIU B H, JIA Y K, YUAN C H, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review [J]. Energy Storage Materials, 2020, 24: 85–112. DOI: 10.1016/j.ensm.2019.06.036.
    [7]
    LAI W J, ALI M Y, PAN J. Mechanical behavior of representative volume elements of lithium-ion battery modules under various loading conditions [J]. Journal of Power Sources, 2014, 248: 789–808. DOI: 10.1016/j.jpowsour.2013.09.128.
    [8]
    JIANG S, SHI F Y, LI J, et al. Internal short circuit and dynamic response of large-format prismatic lithium-ion battery under mechanical abuse [J]. Journal of Electrochemical Energy Conversion and Storage, 2024, 22(2): 1–24. DOI: 10.1115/1.4066056.
    [9]
    XIA Y, WIERZBICKI T, SAHRAEI E, et al. Damage of cells and battery packs due to ground impact [J]. Journal of Power Sources, 2014, 267: 78–97. DOI: 10.1016/j.jpowsour.2014.05.078.
    [10]
    SAHRAEI E, HILL R, WIERZBICKI T. Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity [J]. Journal of Power Sources, 2012, 201: 307–21. DOI: 10.1016/j.jpowsour.2011.10.094.
    [11]
    GREVE L, FEHRENBACH C. Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical lithium ion battery cells [J]. Journal of Power Sources, 2012, 214: 377–85. DOI: 10.1016/j.jpowsour.2012.04.055.
    [12]
    LAI W-J, ALI M Y, PAN J. Mechanical behavior of representative volume elements of lithium-ion battery cells under compressive loading conditions [J]. Journal of Power Sources, 2014, 245: 609–23. DOI: 10.1016/j.jpowsour.2013.06.134.
    [13]
    MALEKI H, HOWARD J N. Internal short circuit in Li-ion cells [J]. Journal of Power Sources, 2009, 191(2): 568–74. DOI: 10.1016/j.jpowsour.2009.02.070.
    [14]
    MAO B B, CHEN H D, CUI Z X, et al. Failure mechanism of the lithium ion battery during nail penetration [J]. International Journal of Heat and Mass Transfer, 2018, 122: 1103–15. DOI: 10.1016/j.ijheatmasstransfer.2018.02.036.
    [15]
    KISTERS T, SAHRAEI E, WIERZBICKI T. Dynamic impact tests on lithium-ion cells [J]. International Journal of Impact Engineering, 2017, 108: 205–16. DOI: 10.1016/j.ijimpeng.2017.04.025.
    [16]
    PAN Z X, LI W, XIA Y. Experiments and 3D detailed modeling for a pouch battery cell under impact loading [J]. Journal of Energy Storage, 2020, 27: 101016. DOI: 10.1016/j.est.2019.101016.
    [17]
    CHEN X P, YUAN Q, WANG T, et al. Experimental study on the dynamic behavior of prismatic lithium-ion battery upon repeated impact [J]. Engineering Failure Analysis, 2020, 115: 104667. DOI: 10.1016/j.engfailanal.2020.104667.
    [18]
    XIA Y, CHEN G H, ZHOU Q, et al. Failure behaviours of 100% SOC lithium-ion battery modules under different impact loading conditions [J]. Engineering Failure Analysis, 2017, 82: 149–60. DOI: 10.1016/j.engfailanal.2017.09.003.
    [19]
    LIU Y J, XIA Y, XING B B, et al. Mechanical-electrical-thermal responses of lithium-ion pouch cells under dynamic loading: A comparative study between fresh cells and aged ones [J]. International Journal of Impact Engineering, 2022, 166: 104237. DOI: 10.1016/j.ijimpeng.2022.104237.
    [20]
    ZHENG G, TAN L L, TIAN G L, et al. Dynamic crashing behaviors of prismatic lithium-ion battery cells [J]. Thin-Walled Structures, 2023, 192: 110902. DOI: 10.1016/j.tws.2023.110902.
    [21]
    ZHOU M Z, HU L L, CHEN S R, et al. Different mechanical-electrochemical coupled failure mechanism and safety evaluation of lithium-ion pouch cells under dynamic and quasi-static mechanical abuse [J]. Journal of Power Sources, 2021, 497: 229897. DOI: 10.1016/j.jpowsour.2021.229897.
    [22]
    XU J, LIU B H, WANG X Y, et al. Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies [J]. Applied Energy, 2016, 172: 180–9. DOI: 10.1016/j.apenergy.2016.03.108.
    [23]
    JIA Y K, YIN S, LIU B H, et al. Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading [J]. Energy, 2019, 166: 951–60. DOI: 10.1016/j.energy.2018.10.142.
    [24]
    AVDEEV I, GILAKI M. Structural analysis and experimental characterization of cylindrical lithium-ion battery cells subject to lateral impact [J]. Journal of Power Sources, 2014, 271: 382–91. DOI: 10.1016/j.jpowsour.2014.08.014.
    [25]
    ZHANG C, SANTHANAGOPALAN S, SPRAGUE M A, et al. Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse [J]. Journal of Power Sources, 2015, 290: 102–13. DOI: 10.1016/j.jpowsour.2015.04.162.
    [26]
    ZHU J E, ZHANG X W, SAHRAEI E, et al. Deformation and failure mechanisms of 18650 battery cells under axial compression [J]. Journal of Power Sources, 2016, 336: 332–40. DOI: 10.1016/j.jpowsour.2016.10.064.
    [27]
    WANG L B, YIN S, XU J. A detailed computational model for cylindrical lithium-ion batteries under mechanical loading: From cell deformation to short-circuit onset [J]. Journal of Power Sources, 2019, 413: 284–92. DOI: 10.1016/j.jpowsour.2018.12.059.
    [28]
    WANG L B, DUAN X D, LIU B H, et al. Deformation and failure behaviors of anode in lithium-ion batteries: model and mechanism [J]. Journal of Power Sources, 2020, 448: 227468. DOI: 10.1016/j.jpowsour.2019.227468.
    [29]
    李红刚, 张超, 曹俊超, 等. 锂离子电池碰撞安全仿真方法的研究进展与展望 [J]. 机械工程学报, 2022, 58(24): 121–44. DOI: 10.3901/JME.2022.24.121.

    LI H G, ZHANG C, CAO J C, et al. Research progress and prospect of collision safety simulation methods for lithium-ion batteries [J]. Journal of Mechanical Engineering, 2022, 58(24): 121–44. DOI: 10.3901/JME.2022.24.121.
    [30]
    TIAN J Q, WANG Y J, CHEN Z H. An improved single particle model for lithium-ion batteries based on main stress factor compensation [J]. Journal of Cleaner Production, 2021, 278. DOI: 10.1016/j.jclepro.2020.123456.
    [31]
    SAHRAEI E, CAMPBELL J, WIERZBICKI T. Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions [J]. Journal of Power Sources, 2012, 220: 360–72. DOI: 10.1016/j.jpowsour.2012.07.057.
    [32]
    XU J, LIU B H, WANG L B, et al. Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing [J]. Engineering Failure Analysis, 2015, 53: 97–110. DOI: 10.1016/j.engfailanal.2015.03.025.
    [33]
    YUAN C H, WANG L B, YIN S, et al. Generalized separator failure criteria for internal short circuit of lithium-ion battery [J]. Journal of Power Sources, 2020, 467: 228360. DOI: 10.1016/j.jpowsour.2020.228360.
    [34]
    WANG H C, PAN Y J, LIU X, et al. Criteria and design guidance for lithium-ion battery safety from a material perspective [J]. Journal of Materials Chemistry A, 2022, 10(12): 6538–50. DOI: 10.1039/d1ta09291j.
    [35]
    JIA Y K, GAO X, MOUILLET J B, et al. Effective thermo-electro-mechanical modeling framework of lithium-ion batteries based on a representative volume element approach [J]. Journal of Energy Storage, 2021, 33: 102090. DOI: 10.1016/j.est.2020.102090.
    [36]
    LI H G, LIU B H, ZHOU D, et al. Coupled mechanical-electrochemical-thermal study on the short-circuit mechanism of lithium-ion batteries under mechanical abuse [J]. Journal of The Electrochemical Society, 2020, 167(12): 120501. DOI: 10.1149/1945-7111/aba96f.
    [37]
    YANG Z C, LI J Q, JIANG H F, et al. A novel model-based damage detection method for lithium-ion batteries [J]. Journal of Energy Storage, 2021, 42: 102970. DOI: 10.1016/j.est.2021.102970.
    [38]
    JIA Y K, GAO X, MA L, et al. Comprehensive Battery Safety Risk Evaluation: Aged Cells versus Fresh Cells Upon Mechanical Abusive Loadings [J]. Advanced Energy Materials, 2023, 13(24): 2300368. DOI: 10.1002/aenm.202300368.
    [39]
    CAI Z H, MENDOIZA S, GOODMAN J, et al. the influence of cycling, temperature, and electrode gapping on the safety of prismatic lithium-ion batteries [J]. Journal of The Electrochemical Society, 2020, 167(16): 160515. DOI: 10.1149/1945-7111/abcabc.
    [40]
    MAGNIER L, LECARME L, ALLOIN F, et al. Tomography imaging of lithium electrodeposits using neutron, synchrotron X-ray, and laboratory X-ray sources: a comparison [J]. Frontiers in Energy Research, 2021, 9: 657712. DOI: 10.3389/fenrg.2021.657712.
    [41]
    BOYCE A M, MARTíNEZ-PAñEDA E, WADE A, et al. Cracking predictions of lithium-ion battery electrodes by X-ray computed tomography and modelling [J]. Journal of Power Sources, 2022, 526: 231119. DOI: 10.1016/j.jpowsour.2022.231119.
    [42]
    ZINTH V, VON LÜDERS C, HOFMANN M, et al. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction [J]. Journal of Power Sources, 2014, 271: 152–9. DOI: 10.1016/j.jpowsour.2014.07.168.
    [43]
    BOBRIKOV I A, SAMOYLOVA N Y, BALAGUROV D A, et al. Neutron diffraction analysis of structural transformations in lithium-ion batteries [J]. Russian Journal of Electrochemistry, 2017, 53(2): 178–86. DOI: 10.1134/S1023193517020033.
    [44]
    VOYIADJIS G Z, AKBARI E, KATTAN P I. Damage model for lithium-ion batteries with experiments and simulations [J]. Journal of Energy Storage, 2023, 57: 106285. DOI: 10.1016/j.est.2022.106285.
    [45]
    ZIESCHE R F, KARDJILOV N, KOCKELMANN W, et al. Neutron imaging of lithium batteries [J]. Joule, 2022, 6(1): 35–52. DOI: 10.1016/j.joule.2021.12.007.
    [46]
    YANG H X, SHAN C F, KOLEN A F, et al. Medical instrument detection in ultrasound: a review [J]. Artificial Intelligence Review, 2022, 56(5): 4363–402. DOI: 10.1007/s10462-022-10287-1.
    [47]
    LIU W J, HU P, XIAO J F, et al. High precision detection of artificial defects in additively manufactured Ti6Al4V alloy via laser ultrasonic testing [J]. Journal of Materials Research and Technology, 2024, 30: 8740–8. DOI: 10.1016/j.jmrt.2024.05.140.
    [48]
    LIAN Y D, DU F J, XIE L Y, et al. Application of laser ultrasonic testing technology in the characterization of material Properties: a review [J]. Measurement, 2024, 234: 114855. DOI: 10.1016/j.measurement.2024.114855.
    [49]
    XUE Z Q, XU Y D, HU M, et al. Systematic review: ultrasonic technology for detecting rail defects [J]. Construction and Building Materials, 2023, 368: 130409. DOI: 10.1016/j.conbuildmat.2023.130409.
    [50]
    MENG K P, CHEN X P, ZHANG W, et al. A robust ultrasonic characterization methodology for lithium-ion batteries on frequency-domain damping analysis [J]. Journal of Power Sources, 2022, 547: 232003. DOI: 10.1016/j.jpowsour.2022.232003.
    [51]
    WEI Y L, YAN Y Z, ZHANG C, et al. State estimation of lithium-ion batteries based on the initial rise time feature of ultrasonic signals [J]. Journal of Power Sources, 2023, 581: 233497. DOI: 10.1016/j.jpowsour.2023.233497.
    [52]
    LADPLI P, KOPSAFTOPOULOS F, CHANG F K. Estimating state of charge and health of lithium-ion batteries with guided waves using built-in piezoelectric sensors/actuators [J]. Journal of Power Sources, 2018, 384: 342–54. DOI: 10.1016/j.jpowsour.2018.02.056.
    [53]
    POPP H, KOLLER M, KELLER S, et al. State estimation approach of lithium-ion batteries by simplified ultrasonic time-of-flight measurement [J]. IEEE Access, 2019, 7: 170992–1000. DOI: 10.1109/access.2019.2955556.
    [54]
    ZHAO G Q, LIU Y, LIU G, et al. State-of-charge and state-of-health estimation for lithium-ion battery using the direct wave signals of guided wave [J]. Journal of Energy Storage, 2021, 39: 102657. DOI: 10.1016/j.est.2021.102657.
    [55]
    LIU B H, TONG W H, CAO Y Z, et al. SOC estimation method based on the ultrasonic guided waves considering the significant effect of charge/discharge rate [J]. Journal of Energy Storage, 2024, 87: 111434. DOI: 10.1016/j.est.2024.111434.
    [56]
    LI X Y, HUA W, WU C X, et al. State estimation of a lithium-ion battery based on multi-feature indicators of ultrasonic guided waves [J]. Journal of Energy Storage, 2022, 56: 106113. DOI: 10.1016/j.est.2022.106113.
    [57]
    TIAN Y, YANG S Y, ZHANG R N, et al. State of charge estimation of lithium-ion batteries based on ultrasonic guided waves by chirped signal excitation [J]. Journal of Energy Storage, 2024, 84: 110897. DOI: 10.1016/j.est.2024.110897.
    [58]
    REICHMANN B, SHARIF-KHODAEI Z. Ultrasonic guided waves as an indicator for the state-of-charge of Li-ion batteries [J]. Journal of Power Sources, 2023, 576. DOI: 10.1016/j.jpowsour.2023.233189.
    [59]
    LI X Y, WU C X, FU C, et al. State Characterization of lithium-ion battery based on ultrasonic guided wave scanning [J]. Energies, 2022, 15(16): 6027. DOI: 10.3390/en15166027.
    [60]
    GAO J, ZHANG L H, LYU Y, et al. Ultrasonic guided wave measurement and modeling analysis of the state of charge for lithium-ion battery [J]. Journal of Energy Storage, 2023, 72: 108384. DOI: 10.1016/j.est.2023.108384.
    [61]
    CIESZKO M, DRELICH R, PAKULA M. Acoustic wave propagation in equivalent fluid macroscopically inhomogeneous materials [J]. The Journal of the Acoustical Society of America, 2012, 132(5): 2970–7. DOI: 10.1121/1.4756949.
    [62]
    CAO Y Z, WANG H C, LIU B H, et al. Modeling, validation, and analysis of swelling behaviors of lithium-ion batteries [J]. Journal of Energy Storage, 2023, 74: 109499. DOI: 10.1016/j.est.2023.109499.
    [63]
    LIAO Z Y, LI H G, WANG H C, et al. Mesoscale mechanical models for active materials in lithium-ion batteries using the multi-particle finite element method [J]. Extreme Mechanics Letters, 2024, 69: 102154. DOI: 10.1016/j.eml.2024.102154.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (62) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return