Citation: | LIU Kangqi, LIU Hongyan, ZHOU Yuezhi, XUE Lei, ZHANG Guangxiong. Dynamic mechanical behaviors of single-jointed rock mass under cyclic impact loadings[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0353 |
[1] |
孙广忠. 论“岩体结构控制论” [J]. 工程地质学报, 1993, 1(1): 14–18.
SUN G Z. On the theory of structure-controlled rock mass [J]. Journal of Engineering Geology, 1993, 1(1): 14–18.
|
[2] |
SINGH M, RAO K S, RAMAMURTHY T. Strength and deformational behaviour of a jointed rock mass [J]. Rock Mechanics and Rock Engineering, 2002, 35(1): 45–64. DOI: 10.1007/s006030200008.
|
[3] |
SARFARAZI V, HAERI H. A review of experimental and numerical investigations about crack propagation [J]. Computers and Concrete, 2016, 18(2): 235–266. DOI: 10.12989/cac.2016.18.2.235.
|
[4] |
ZHAO F, SHI Z M, YU S B, et al. A review of fracture mechanic behaviors of rocks containing various defects [J]. Underground Space, 2023, 12: 102–115. DOI: 10.1016/j.undsp.2023.02.006.
|
[5] |
NAOI M, NAKATANI M, IGARASHI T, et al. Unexpectedly frequent occurrence of very small repeating earthquakes (-5.1≤M W≤-3.6) in a south African gold mine: implications for monitoring intraplate faults [J]. Journal of Geophysical Research: Solid Earth, 2015, 120(12): 8478–8493. DOI: 10.1002/2015JB012447.
|
[6] |
HUANG J, CHEN S H, LIU M L, et al. Physical model test and numerical simulation study of cumulative damage to deep tunnel surrounding rock under cyclic blasting load [J]. International Journal of Damage Mechanics, 2023, 32(2): 161–184. DOI: 10.1177/10567895221133133.
|
[7] |
QUINTEROS-CARTAYA C, SOLORIO-MAGAÑA G, NÚÑEZ-CORNÚ F J, et al. Microearthquakes in the Guadalajara Metropolitan Zone, Mexico: evidence from buried active faults in Tesistán Valley, Zapopan [J]. Natural Hazards, 2023, 116(3): 2797–2818. DOI: 10.1007/s11069-022-05806-w.
|
[8] |
BAHAADDINI M, SHARROCK G, HEBBLEWHITE B K. Numerical direct shear tests to model the shear behaviour of rock joints [J]. Computers and Geotechnics, 2013, 51: 101–115. DOI: 10.1016/j.compgeo.2013.02.003.
|
[9] |
ASADIZADEH M, HOSSAINI M F, MOOSAVI M, et al. Mechanical characterisation of jointed rock-like material with non-persistent rough joints subjected to uniaxial compression [J]. Engineering Geology, 2019, 260: 105224. DOI: 10.1016/j.enggeo.2019.105224.
|
[10] |
刘红岩, 李俊峰, 裴小龙. 单轴压缩下断续节理岩体动态损伤本构模型 [J]. 爆炸与冲击, 2018, 38(2): 316–323. DOI: 10.11883/bzycj-2016-0261.
LIU H Y, LI J F, PEI X L. A dynamic damage constitutive model for rockmass with intermittent joints under uniaxial compression [J]. Explosion and Shock Waves, 2018, 38(2): 316–323. DOI: 10.11883/bzycj-2016-0261.
|
[11] |
邓正定, 王桢, 刘红岩. 基于复合损伤的节理岩体动态本构模型研究 [J]. 岩土力学, 2015, 36(5): 1368–1374. DOI: 10.16285/j.rsm.2015.05.019.
DENG Z D, WANG Z, LIU H Y. Dynamic constitutive model of jointed rock mass based on the theory of composite damage [J]. Rock and Soil Mechanics, 2015, 36(5): 1368–1374. DOI: 10.16285/j.rsm.2015.05.019.
|
[12] |
刘红岩, 吕淑然, 张力民. 基于组合模型法的贯通节理岩体动态损伤本构模型 [J]. 岩土工程学报, 2014, 36(10): 1814–1821. DOI: 10.11779/CJGE201410008.
LIU H Y, LÜ S R, ZHANG L M. Dynamic damage constitutive model for persistent jointed rock mass based on combination model method [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1814–1821. DOI: 10.11779/CJGE201410008.
|
[13] |
YAN Z L, DAI F, LIU Y, et al. Numerical assessment of the rate-dependent cracking behaviours of single-flawed rocks in split Hopkinson pressure bar tests [J]. Engineering Fracture Mechanics, 2021, 247: 107656. DOI: 10.1016/j.engfracmech.2021.107656.
|
[14] |
YOU W, DAI F, LIU Y. Experimental and numerical investigation on the mechanical responses and cracking mechanism of 3D confined single-flawed rocks under dynamic loading [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(2): 477–493. DOI: 10.1016/j.jrmge.2021.09.006.
|
[15] |
QIU J D, ZHOU C T, WANG Z H, et al. Dynamic responses and failure behavior of jointed rock masses considering pre-existing joints using a hybrid BPM-DFN approach [J]. Computers and Geotechnics, 2023, 155: 105237. DOI: 10.1016/j.compgeo.2022.105237.
|
[16] |
ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411–1478. DOI: 10.1007/s00603-013-0463-y.
|
[17] |
刘红岩, 邓正定, 王新生, 等. 节理岩体动态破坏的SHPB相似材料试验研究 [J]. 岩土力学, 2014, 35(3): 659–665. DOI: 10.16285/j.rsm.2014.03.004.
LIU H Y, DENG Z D, WANG X S, et al. Similar material test study of dynamic failure of jointed rock mass with SHPB [J]. Rock and Soil Mechanics, 2014, 35(3): 659–665. DOI: 10.16285/j.rsm.2014.03.004.
|
[18] |
王建国, 梁书锋, 高全臣, 等. 节理倾角对类岩石冲击能量传递影响的试验研究 [J]. 中南大学学报(自然科学版), 2018, 49(5): 1237–1243. DOI: 10.11817/j.issn.1672-7207.2018.05.027.
WANG J G, LIANG S F, GAO Q C, et al. Experimental study of jointed angles impact on energy transfer characteristics of simulated rock material [J]. Journal of Central South University (Science and Technology), 2018, 49(5): 1237–1243. DOI: 10.11817/j.issn.1672-7207.2018.05.027.
|
[19] |
李地元, 韩震宇, 孙小磊, 等. 含预制裂隙大理岩SHPB动态力学破坏特性试验研究 [J]. 岩石力学与工程学报, 2017, 36(12): 2872–2883. DOI: 10.13722/j.cnki.jrme.2017.0488.
LI D Y, HAN Z Y, SUN X L, et al. Characteristics of dynamic failure of marble with artificial flaws under split Hopkinson pressure bar tests [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2872–2883. DOI: 10.13722/j.cnki.jrme.2017.0488.
|
[20] |
张人凡, 朱哲明, 王飞, 等. 冲击载荷作用下黑砂岩动态断裂参数的分形修正 [J]. 爆炸与冲击, 2022, 42(7): 073101. DOI: 10.11883/bzycj-2022-0051.
ZHANG R F, ZHU Z M, WANG F, et al. Fractal correction of dynamic fracture parameters of black sandstone under impact loads [J]. Explosion and Shock Waves, 2022, 42(7): 073101. DOI: 10.11883/bzycj-2022-0051.
|
[21] |
SHU P Y, LI H H, WANG T T, et al. Dynamic strength of rock with single planar joint under various loading rates at various angles of loads applied [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(3): 545–554. DOI: 10.1016/j.jrmge.2018.01.005.
|
[22] |
RAE A S P, KENKMANN T, PADMANABHA V, et al. Dynamic compressive strength and fragmentation in felsic crystalline rocks [J]. Journal of Geophysical Research: Planets, 2020, 125(10): e2020JE006561. DOI: 10.1029/2020JE006561.
|
[23] |
RAE A S P, KENKMANN T, PADMANABHA V, et al. Dynamic compressive strength and fragmentation in sedimentary and metamorphic rocks [J]. Tectonophysics, 2022, 824: 229221. DOI: 10.1016/j.tecto.2022.229221.
|
[24] |
ZOU C J, WONG L N Y. Experimental studies on cracking processes and failure in marble under dynamic loading [J]. Engineering Geology, 2014, 173: 19–31. DOI: 10.1016/j.enggeo.2014.02.003.
|
[25] |
LI X B, ZHOU T, LI D Y. Dynamic strength and fracturing behavior of single-flawed prismatic marble specimens under impact loading with a split Hopkinson pressure bar [J]. Rock Mechanics and Rock Engineering, 2017, 50(1): 29–44. DOI: 10.1007/s00603-016-1093-y.
|
[26] |
LI D Y, HAN Z Y, SUN X L, et al. Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests [J]. Rock Mechanics and Rock Engineering, 2019, 52(6): 1623–1643. DOI: 10.1007/s00603-018-1652-5.
|
[27] |
DONG P, WU B B, XIA K W, et al. Fracture modes of single-flawed rock-like material plates subjected to dynamic compression [J]. International Journal of Geomechanics, 2020, 20(9): 04020145. DOI: 10.1061/(ASCE)GM.1943-5622.0001765.
|
[28] |
YAN Z L, DAI F, LIU Y, et al. Experimental investigations of the dynamic mechanical properties and fracturing behavior of cracked rocks under dynamic loading [J]. Bulletin of Engineering Geology and the Environment, 2020, 79(10): 5535–5552. DOI: 10.1007/s10064-020-01914-8.
|
[29] |
WANG X Y, LIU Z Y, GAO X C, et al. Dynamic characteristics and fracture process of marble under repeated impact loading [J]. Engineering Fracture Mechanics, 2022, 276: 108926. DOI: 10.1016/j.engfracmech.2022.108926.
|
[30] |
王志亮, 汪大为, 汪书敏, 等. 循环冲击下大理岩的损伤力学行为及能量耗散特性 [J]. 爆炸与冲击, 2024, 44(4): 043104. DOI: 10.11883/bzycj-2023-0243.
WANG Z L, WANG D W, WANG S M, et al. Dynamic behaviors and energy dissipation characteristics of marble under cyclic impact loading [J]. Explosion and Shock Waves, 2024, 44(4): 043104. DOI: 10.11883/bzycj-2023-0243.
|
[31] |
HAN Z Y, LI D Y, ZHOU T, et al. Dynamic progressive fracture behavior of axially confined sandstone specimens containing a single flaw [J]. Theoretical and Applied Fracture Mechanics, 2022, 122: 103597. DOI: 10.1016/j.tafmec.2022.103597.
|
[32] |
LUO Y, GONG H L, HUANG J H, et al. Dynamic cumulative damage characteristics of deep-buried granite from Shuangjiangkou hydropower station under true triaxial constraint [J]. International Journal of Impact Engineering, 2022, 165: 104215. DOI: 10.1016/j.ijimpeng.2022.104215.
|
[33] |
LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. DOI: 10.1007/s00603-004-0030-7.
|
[34] |
XIA K, NASSERI M H B, MOHANTY B, et al. Effects of microstructures on dynamic compression of Barre granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 879–887. DOI: 10.1016/j.ijrmms.2007.09.013.
|
[35] |
ZHOU T, DONG S L, ZHAO G F, et al. An experimental study of fatigue behavior of granite under low-cycle repetitive compressive impacts [J]. Rock Mechanics and Rock Engineering, 2018, 51(10): 3157–3166. DOI: 10.1007/s00603-018-1515-0.
|
[36] |
LI X F, LI H B, ZHANG Q B, et al. Dynamic fragmentation of rock material: characteristic size, fragment distribution and pulverization law [J]. Engineering Fracture Mechanics, 2018, 199: 739–759. DOI: 10.1016/j.engfracmech.2018.06.024.
|
[37] |
ABEN F M, DOAN M L, MITCHELL T M, et al. Dynamic fracturing by successive coseismic loadings leads to pulverization in active fault zones [J]. Journal of Geophysical Research: Solid Earth, 2016, 121(4): 2338–2360. DOI: 10.1002/2015JB012542.
|
[38] |
DOAN M L, D’HOUR V. Effect of initial damage on rock pulverization along faults [J]. Journal of Structural Geology, 2012, 45: 113–124. DOI: 10.1016/j.jsg.2012.05.006.
|
[39] |
ZHOU T, HAN Z Y, LI D Y, et al. Experimental study of the mechanical and fracture behavior of flawed sandstone subjected to coupled static-repetitive impact loading [J]. Theoretical and Applied Fracture Mechanics, 2022, 117: 103161. DOI: 10.1016/j.tafmec.2021.103161.
|
[40] |
LIU K Q, LIU H Y, ZHOU Y Z, et al. Experimental study on the dynamic mechanical and progressive fracture behavior of multi-jointed rock mass under repetitive impact loading [J]. Theoretical and Applied Fracture Mechanics, 2024, 131: 104416. DOI: 10.1016/j.tafmec.2024.104416.
|
[41] |
RAVICHANDRAN G, SUBHASH G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar [J]. Journal of the American Ceramic Society, 1994, 77(1): 263–267. DOI: 10.1111/j.1151-2916.1994.tb06987.x.
|
[42] |
DAI F, XU Y, ZHAO T, et al. Loading-rate-dependent progressive fracturing of cracked chevron-notched Brazilian disc specimens in split Hopkinson pressure bar tests [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 88: 49–60. DOI: 10.1016/j.ijrmms.2016.07.003.
|
[43] |
HOKKA M, BLACK J, TKALICH D, et al. Effects of strain rate and confining pressure on the compressive behavior of Kuru granite [J]. International Journal of Impact Engineering, 2016, 91: 183–193. DOI: 10.1016/j.ijimpeng.2016.01.010.
|
[44] |
WANG P, YIN T B, LI X B, et al. Dynamic properties of thermally treated granite subjected to cyclic impact loading [J]. Rock Mechanics and Rock Engineering, 2019, 52(4): 991–1010. DOI: 10.1007/s00603-018-1606-y.
|
[45] |
KIMBERLEY J, RAMESH K T, DAPHALAPURKAR N P. A scaling law for the dynamic strength of brittle solids [J]. Acta Materialia, 2013, 61(9): 3509–3521. DOI: 10.1016/j.actamat.2013.02.045.
|
[46] |
郭奇峰, 武旭, 蔡美峰, 等. 预制裂隙花岗岩的裂纹起裂机理试验研究 [J]. 煤炭学报, 2019, 44(S2): 476–483. DOI: 10.13225/j.cnki.jccs.2019.1212.
GUO Q F, WU X, CAI M F, et al. Crack initiation mechanism of pre-existing cracked granite [J]. Journal of China Coal Society, 2019, 44(S2): 476–483. DOI: 10.13225/j.cnki.jccs.2019.1212.
|