Citation: | CHEN Xing, HAN Bin, CUI Zhonghua, LI Zhiwen, GUO Mingkai, WANG Guilong. Experimental study of the radiation characteristics of hypervelocity impact flash[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0355 |
[1] |
HENDERSON M, BLUME W. Deep impact–a review of the world's pioneering hypervelocity impact mission [J]. Procedia Engineering, 2015, 103: 165–172. DOI: 10.1016/j.proeng.2015.04.023.
|
[2] |
A'HEARN M F, BELTON M J S, DELAMERE W A, et al. Deep impact: excavating comet tempel 1 [J]. Science, 2005, 310(5746): 258–264. DOI: 10.1126/science.1118923.
|
[3] |
ERNST C M, SCHULTZ P H. Evolution of the deep impact flash: implications for the nucleus surface based on laboratory experiments [J]. Icarus, 2007, 190(2): 334–344. DOI: 10.1016/j.icarus.2007.03.030.
|
[4] |
IDRICI D, GOROSHIN S, SOO M J, et al. Light emission signatures from ballistic impact of reactive metal projectiles [J]. International Journal of Impact Engineering, 2021, 150: 103814. DOI: 10.1016/j.ijimpeng.2021.103814.
|
[5] |
HEW Y M, GOEL A, CLOSE S, et al. Hypervelocity impact flash and plasma on electrically biased spacecraft surfaces [J]. International Journal of Impact Engineering, 2018, 121: 1–11. DOI: 10.1016/j.ijimpeng.2018.05.008.
|
[6] |
EICHHORN G. Analysis of the hypervelocity impact process from impact flash measurements [J]. Planetary and Space Science, 1976, 24(8): 771–781. DOI: 10.1016/0032-0633(76)90114-8.
|
[7] |
TSEMBELIS K, BURCHELL M J, COLE M J, et al. Residual temperature measurements of light flash under hypervelocity impact [J]. International Journal of Impact Engineering, 2008, 35(11): 1368–1373. DOI: 10.1016/j.ijimpeng.2007.09.004.
|
[8] |
HEUNOSKE D, SCHIMMEROHN M, OSTERHOLZ J, et al. Time-resolved emission spectroscopy of impact plasma [J]. Procedia Engineering, 2013, 58: 624–633. DOI: 10.1016/j.proeng.2013.05.072.
|
[9] |
SUGITA S, SCHULTZ P H, ADAMS M A. Spectroscopic measurements of vapor clouds due to oblique impacts [J]. Journal of Geophysical Research: Planets, 1998, 103(E8): 19427–19441. DOI: 10.1029/98JE02026.
|
[10] |
SUGITA S, SCHULTZ P H, HASEGAWA S. Intensities of atomic lines and molecular bands observed in impact-induced luminescence [J]. Journal of Geophysical Research: Planets, 2003, 108(E12): 5140. DOI: 10.1029/2003je002156.
|
[11] |
HAN Y F, YUAN M E, TANG E L, et al. Experimental study on flash radiation and damage characteristics of C/SiC composites induced by hypervelocity impact [J]. International Journal of Impact Engineering, 2021, 155: 103902. DOI: 10.1016/j.ijimpeng.2021.103902.
|
[12] |
ERLANDSON R E, TAYLOR J C, MICHAELIS C H, et al. Development of kill assessment technology for space-based applications [J]. Johns Hopkins APL Technical Digest, 2010, 29(3): 289–297.
|
[13] |
ZHANG K, LONG R R, ZHANG Q M, et al. Flash characteristics of plasma induced by hypervelocity impact [J]. Physics of Plasmas, 2016, 23(8): 083519. DOI: 10.1063/1.4960297.
|
[14] |
HEW Y Y M. Optical characterization methods for hypervelocity impact generated plasma [M]. Stanford: Stanford University, 2018.
|
[15] |
MA Z X, SHI A H, LI J L, et al. Radiation evolution characteristics of the ejecta cloud produced by aluminum projectiles hypervelocity impacting aluminum plates [J]. International Journal of Impact Engineering, 2020, 138: 103480. DOI: 10.1016/j.ijimpeng.2019.103480.
|
[16] |
MA Z X, SHI A H, LI J L, et al. Radiation mechanism analysis of hypervelocity impact Ejecta cloud [J]. International Journal of Impact Engineering, 2020, 141: 103560. DOI: 10.1016/j.ijimpeng.2020.103560.
|
[17] |
XUE Y J, ZHANG Q M, LIU D Y, et al. Hypersonic impact flash characteristics of a long-rod projectile collision with a thin plate target [J]. Defence Technology, 2021, 17(2): 375–383. DOI: 10.1016/j.dt.2020.02.011.
|
[18] |
XUE Y J, ZHANG Q M, HAO W, et al. Energy distribution characteristic of impact flash of metallic target impacted by hypersonic projectile [J]. International Journal of Impact Engineering, 2024, 186: 104866. DOI: 10.1016/j.ijimpeng.2023.104866.
|