• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
LIU Jiang, GUI Mingyue, ZHANG Daoping, DONG Gang. Numerical study on unsteady structure of oblique detonation wave induced by a finite cone[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0356
Citation: LIU Jiang, GUI Mingyue, ZHANG Daoping, DONG Gang. Numerical study on unsteady structure of oblique detonation wave induced by a finite cone[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0356

Numerical study on unsteady structure of oblique detonation wave induced by a finite cone

doi: 10.11883/bzycj-2024-0356
  • Received Date: 2024-09-20
  • Rev Recd Date: 2025-04-02
  • Available Online: 2025-04-08
  • Axisymmetric conical structures, as a common configuration, induce oblique detonation waves exhibiting significantly greater structural complexity compared to those generated by sharp wedges. Numerical simulations of oblique detonation waves induced by a finite cone were performed using the open-source code OpenFOAM, with analysis conducted on post-detonation flow fields, wavefront structure, and detonation cell structures. The numerical results show that under the effect of the finite cone the flow field behind the detonation wave is successively influenced by Taylor-Maccoll flow and Prandtl-Meyer expansion waves. The pressure and Mach number along the streamlines at different positions on the detonation wave front exhibit oscillatory changes with the influence of these two physical processes and triple points on oblique detonation surfaces, and then tend to stabilize. Depending on the different post-detonation flow field, the detonation wave front structure is divided into four sections: smooth ZND (Zel'dovich- Neumann-Döring)-like structure, single-headed triple points cell-like structure, dual-headed triple points cell structure and dual-headed triple point structure influenced by Prandtl-Meyer. The shock pole curve theory is used to analyze the wave structures. It is found that the upstream-facing triple points exhibits higher detonation intensity, i.e., higher Mach number and pressure, compared to the downstream-facing triple points in dual-headed triple points structure. Finally, based on the above analysis, triple point traces are recorded to obtain four different cell structures: smooth planar structure, parallel line structure, oblique rhombus structure, and irregular oblique rhombus structure.
  • loading
  • [1]
    范宝春, 张旭东, 潘振华, 等. 用于推进的三种爆轰波的结构特征 [J]. 力学进展, 2012, 42(2): 162–169. DOI: 10.6052/1000-0992-2012-2-20120204.

    FAN B C, ZHANG X D, PAN Z H, et al. Fundamental characteristics of three types of detonation waves utilized in propulsion [J]. Advances in Mechanics, 2012, 42(2): 162–169. DOI: 10.6052/1000-0992-2012-2-20120204.
    [2]
    LI C, KAILASANATH K, ORAN E S. Detonation structures behind oblique shocks [J]. Physics of Fluids, 1994, 6(4): 1600–1611. DOI: 10.1063/1.868273.
    [3]
    TENG H H, ZHAO W, JIANG Z L. A novel oblique detonation structure and its stability [J]. Chinese Physics Letters, 2007, 24(7): 1985–1988. DOI: 10.1088/0256-307X/24/7/055.
    [4]
    归明月, 范宝春. 尖劈诱导的斜爆轰波的精细结构及其影响因素 [J]. 推进技术, 2012, 33(3): 490–494. DOI: 10.13675/j.cnki.tjjs.2012.03.002.

    GUI M Y, FAN B C. Fine structure and its influence factor of wedge-induced oblique detonation waves [J]. Journal of Propulsion Technology, 2012, 33(3): 490–494. DOI: 10.13675/j.cnki.tjjs.2012.03.002.
    [5]
    TENG H H, JIANG Z L, NG H D. Numerical study on unstable surfaces of oblique detonations [J]. Journal of Fluid Mechanics, 2014, 744(2): 111–128. DOI: 10.1017/jfm.2014.78.
    [6]
    LIU Y, LIU Y S, WU D, et al. Structure of an oblique detonation wave induced by a wedge [J]. Shock Waves, 2016, 26(2): 161–168. DOI: 10.1007/s00193-015-0600-5.
    [7]
    LIU Y, HAN X, YAO S, et al. A numerical investigation of the prompt oblique detonation wave sustained by a finite-length wedge [J]. Shock Waves, 2016, 26(6): 729–739. DOI: 10.1007/s00193-016-0626-3.
    [8]
    YANG L, YUE L, ZHANG Q, et al. Numerical study on the shock/combustion interaction of oblique detonation waves [J]. Aerospace Science and Technology, 2020, 104: 105938. DOI: 10.1016/j.ast.2020.105938.
    [9]
    王爱峰, 赵伟, 姜宗林. 斜爆轰的胞格结构及横波传播 [J]. 爆炸与冲击, 2010, 30(4): 349–354. DOI: 10.11883/1001-1455(2010)04-0349-06.

    WANG A F, ZHAO W, JIANG Z L. Cellular structure of oblique detonation and propagation of transverse wave [J]. Explosion and Shock Waves, 2010, 30(4): 349–354. DOI: 10.11883/1001-1455(2010)04-0349-06.
    [10]
    YANG P, LI H, CHEN Z, et al. Numerical investigation on movement of triple points on oblique detonation surfaces [J]. Physics of Fluids, 2022, 34(6): 066113. DOI: 10.1063/5.0091078.
    [11]
    YAO K, WANG C, JIANG Z. A numerical study of oblique detonation re-stabilization by expansion waves [J]. Aerospace Science and Technology, 2022, 122: 107409. DOI: 10.1016/j.ast.2022.107409.
    [12]
    刘岩, 武丹, 王健平. 低马赫数下斜爆轰波的结构 [J]. 爆炸与冲击, 2015, 35(2): 203–207. DOI: 10.11883/1001-1455(2015)02-0203-05.

    LIU Y, WU D, WANG J P. Structure of oblique detonation wave at low inflow mach number [J]. Explosion and Shock Waves, 2015, 35(2): 203–207. DOI: 10.11883/1001-1455(2015)02-0203-05.
    [13]
    ZHANG Z, WEN C, ZHANG W, et al. Formation of stabilized oblique detonation waves in a combustor [J]. Combustion and Flame, 2021, 223: 423–436. DOI: 10.1016/j.combustflame.2020.09.034.
    [14]
    ZHANG G Q, GAO S F, XIANG G X. Study on initiation mode of oblique detonation induced by a finite wedge [J]. Physics of Fluids, 2021, 33(1): 016102. DOI: 10.1063/5.0035960.
    [15]
    VERREAULT J, HIGGINS A J. Initiation of detonation by conical projectiles [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2311–2318. DOI: 10.1016/j.proci.2010.07.086.
    [16]
    KASAHARA J, FUJIWARA T, ENDO T, et al. Chapman-Jouguet oblique detonation structure around hypersonic projectiles [J]. AIAA journal, 2001, 39(8): 1553–1561. DOI: 10.2514/2.1480.
    [17]
    董刚, 范宝春, 李鸿志. 圆锥激波诱导的爆燃和爆轰不稳定性研究 [J]. 兵工学报, 2010, 31(4): 401–408.

    DONG G, FAN B C, LI H Z. An investigation on instability of deflagration and detonation induced by conical shock wave [J]. Acta Armamentarii, 2010, 31(4): 401–408.
    [18]
    YANG P, NG H D, TENG H, et al. Initiation structure of oblique detonation waves behind conical shocks [J]. Physics of Fluids, 2017, 29(8): 086104. DOI: 10.1063/1.4999482.
    [19]
    HAN W, WANG C, LAW C K. Three-dimensional simulation of oblique detonation waves attached to cone [J]. Physical Review Fluids, 2019, 4(5): 053201. DOI: 10.1103/PhysRevFluids.4.053201.
    [20]
    ABISLEIMAN S, SHARMA V, BIELAWSKI R, et al. Structure of three-dimensional conical oblique detonation waves [J]. Combustion and Flame, 2025, 274: 113971. DOI: 10.1016/j.combustflame.2025.113971.
    [21]
    STURTZER M O, TOGAMI K, YAMASHITA S, et al. Detonation wave generated by a hypervelocity projectile [J]. Heat Transfer Research, 2007, 38(4): 291–297. DOI: 10.1615/HeatTransRes.v38.i4.10.
    [22]
    李俊红, 沈清, 程晓丽. 曲面激波诱导斜爆轰的数值模拟 [J]. 推进技术, 2019, 40(11): 2521–2527. DOI: 10.13675/j.cnki.tjjs.190041.

    LI J H, SHEN Q, CHENG X L. Numerical simulation on shock-induced detonation [J]. Journal of Propulsion Technology, 2019, 40(11): 2521–2527. DOI: 10.13675/j.cnki.tjjs.190041.
    [23]
    MAEDA S, KASAHARA J, MATSUO A. Oblique detonation wave stability around a spherical projectile by a high time resolution optical observation [J]. Combustion and flame, 2012, 159(2): 887–896. DOI: 10.1016/j.combustflame.2011.09.001.
    [24]
    周平, 范宝春, 归明月. 可燃介质中飞行圆球诱导斜爆轰的流场结构 [J]. 爆炸与冲击, 2012, 32(3): 278–282. DOI: 10.11883/1001-1455(2012)03-0278-05.

    ZHOU P, FAN B C, GUI M Y. Flow pattern of oblique detonation induced by a hyperve locity ball in combustible gas [J]. Explosion and Shock Waves, 2012, 32(3): 278–282. DOI: 10.11883/1001-1455(2012)03-0278-05.
    [25]
    ANDERSON J D. Modern compressible flow: with historical perspective [M]. New York: McGraw-Hill, 1990: 167-371.
    [26]
    BOURLIOUX A, MAJDA A J. Theoretical and numerical structure for unstable two-dimensional detonations [J]. Combustion and Flame, 1992, 90(3): 211–229. DOI: 10.1016/0010-2180(92)90084-3.
    [27]
    KURGANOV A, NOELLE S, PETROVA G. Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations [J]. SIAM Journal on Scientific Computing, 2001, 23(3): 707–740. DOI: 10.1137/S1064827500373413.
    [28]
    BADER G, DEUFLHARD P. A semi-implicit mid-point rule for stiff systems of ordinary differential equations [J]. Numerische Mathematik, 1983, 41(3): 373–398. DOI: 10.1007/BF01418331.
    [29]
    GUI M Y, FAN B C, DONG G. Periodic oscillation and fine structure of wedge-induced oblique detonation waves [J]. Acta Mechanica Sinica, 2011, 27(6): 922–928. DOI: 10.1007/s10409-011-0508-y.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (124) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return