Turn off MathJax
Article Contents
LI Jiayao, LIANG Rongzhen, HU Xianzhong. Study of the effect of CO2 on the lower flammability limit of acetylene in O2/CO2 atmosphere[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0359
Citation: LI Jiayao, LIANG Rongzhen, HU Xianzhong. Study of the effect of CO2 on the lower flammability limit of acetylene in O2/CO2 atmosphere[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0359

Study of the effect of CO2 on the lower flammability limit of acetylene in O2/CO2 atmosphere

doi: 10.11883/bzycj-2024-0359
  • Received Date: 2024-09-23
  • Rev Recd Date: 2024-12-31
  • Available Online: 2025-01-01
  • Oxy-fuel combustion is one of the effective means to reduce greenhouse gases. In order to grasp the combustion characteristics of the clean fuel acetylene in O2/CO2 atmosphere and to investigate the effect of different concentrations of CO2 on the lower flammable limit of acetylene, the lower flammable limit of acetylene was experimentally measured in a 5L cylindrical explosive reaction device. With the increase of CO2 concentration from 14% to 85%, the experimental value of the lower flammable limit of acetylene increased from 2.64% to 3.93%, which was linearly increased in a small range. Compared with hydrocarbon fuels such as ethylene, ethane, and propylene, the lower flammability limit presents alkanes > olefins > alkynes, indicating that alkynes have a larger combustion range and a higher hazard factor. Based on the calculation model of limiting laminar flame velocity method, a prediction model applicable to the lower flammability limit of acetylene was established. Through the verification of experimental data, the average absolute error of this prediction model using the USC II combustion reaction mechanism is at 0.52%, and the model is accurate and reliable. In order to explain the reason for the existence of the lower flammability limit from the perspective of the competition between the temperature rise of the heat generation from fuel consumption and the temperature drop of the heat dissipation from the expansion of the fuel body, the thermodynamic, chemical, and transport effects of CO2 on the lower flammability limit are discussed by using the model and modifying the combustion reaction mechanism of USC II to introduce the virtual substances FCO2, TCO2, and MCO2, and comparing the flammability limits of the three virtual substances as well as those of the five atmospheres of N2 and CO2. The thermodynamic, chemical and transport effects of CO2 on the lower flammability limit were discussed. The results show that the average proportion of thermodynamic effect is 64%, chemical effect is 35% and transportation effect is 1%.
  • loading
  • [1]
    李旭东, 谭青博, 赵浩辰, 等. 碳达峰背景下中国电力行业碳排放因素和脱钩效应 [J]. 中国电力, 2024, 57(5): 88–98. DOI: 10.11930/j.issn.1004-9649.202306019.

    LI X D, TAN Q B, ZHAO H C, et al. Carbon emission factors and decoupling effects of China’s power industry under the background of carbon peak [J]. Electric Power, 2024, 57(5): 88–98. DOI: 10.11930/j.issn.1004-9649.202306019.
    [2]
    ZHAO F M, ROGERS W J, MANNAN M S. Experimental measurement and numerical analysis of binary hydrocarbon mixture flammability limits [J]. Process Safety and Environmental Protection, 2009, 87(2): 94–104. DOI: 10.1016/j.psep.2008.06.003.
    [3]
    尹林虎, 任小荣, 马利云, 等. 乙炔生产工艺应用与推广 [J]. 江西化工, 2018(1): 39–41. DOI: 10.14127/j.cnki.jiangxihuagong.2018.01.014.

    YIN L H, REN X R, MA L Y, et al. Application and popularization acetylene production [J]. Jiangxi Chemical Industry, 2018(1): 39–41. DOI: 10.14127/j.cnki.jiangxihuagong.2018.01.014.
    [4]
    NGUYEN V G, DAGER B, CHHILLAR A, et al. Desirability-based optimization of dual-fuel diesel engine using acetylene as an alternative fuel [J]. Case Studies in Thermal Engineering, 2024, 59: 104488. DOI: 10.1016/j.csite.2024.104488.
    [5]
    LAWRENCE K R, ANCHUPOGU P, REDDYGARI M R, et al. Optimization of biodiesel yield and performance investigations on diesel engine powered with hydrogen and acetylene gas injected with enriched Jojoba biodiesel blend [J]. International Journal of Hydrogen Energy, 2024, 50: 502–523. DOI: 10.1016/j.ijhydene.2023.09.166.
    [6]
    HU X Z, YU Q B, SUN N, et al. Effects of high concentrations of CO2 on the lower flammability limits of oxy-methane mixtures [J]. Energy & Fuels, 2016, 30(5): 4346–4352. DOI: 10.1021/acs.energyfuels.6b00492.
    [7]
    HU X Z, YU Q B, SUN Y S. Effects of carbon dioxide on the upper flammability limits of methane in O2/CO2 atmosphere [J]. Energy, 2020, 208: 118417. DOI: 10.1016/j.energy.2020.118417.
    [8]
    SONG D E, HU X Z. Effects of CO2 on the flammability limits of ethane in O2/CO2 atmosphere [J]. Fuel, 2022, 324: 124543. DOI: 10.1016/j.fuel.2022.124543.
    [9]
    HU X Z, XIE Q H, YU Q B, et al. Effect of Carbon Dioxide on the lower flammability limit of propane in O2/CO2 atmosphere [J]. Energy & Fuels, 2020, 34(4): 4993–4998. DOI: 10.1021/acs.energyfuels.0c00601.
    [10]
    CHENG F M, LI B B, LUO Z M, et al. Effect of CO2 on the explosion limit parameters and kinetic characteristics of ammonia-hydrogen-air mixtures [J]. Journal of Loss Prevention in the Process Industries, 2024, 92: 105480. DOI: 10.1016/j.jlp.2024.105480.
    [11]
    TIAN Y, BAI M Q, LI Y X, et al. Effects of N2 and CO2 on the flammability of 2, 3, 3, 3-tetrafluoropropene at elevated temperatures [J]. Journal of Loss Prevention in the Process Industries, 2023, 83: 105024. DOI: 10.1016/j.jlp.2023.105024.
    [12]
    KIM T, BUKAR M, BASNET S, et al. Effects of O2 concentration of O2/CO2 co-flow on the flame stability of non-premixed coaxial jet flame [J]. Fuel, 2024, 371: 132114. DOI: 10.1016/j.fuel.2024.132114.
    [13]
    陈肯, 张一泽, 孙肇林, 等. O2/CO2气氛下CH4/H2可燃下极限的实验研究 [J]. 冶金能源, 2019, 38(6): 31–36. DOI: 10.3969/j.issn.1001-1617.2019.06.008.

    CHEN K, ZHANG Y Z, SUN Z L, et al. Experimental study on the lower flammability limits of CH4/H2 in O2/CO2 atmosphere [J]. Metallurgical Energy, 2019, 38(6): 31–36. DOI: 10.3969/j.issn.1001-1617.2019.06.008.
    [14]
    KUMUK O. CO2, Ar, and He dilution effects on combustion dynamics and characteristics in a laboratory-scale combustor [J]. Fuel, 2024, 369: 131745. DOI: 10.1016/j.fuel.2024.131745.
    [15]
    BAZALAN B B. Effect pressure on the flammability limits of acetylene [D]. Pahang: Universiti Malaysia Pahang, 2012.
    [16]
    WANG H, YOU X Q, JOSHI A V, et al. High-temperature combustion reaction model of H2/CO/C1-C4 compounds [EB/OL]. [2024-09-23]. http://ignis.usc.edu/USC_Mech_II.htm.
    [17]
    XU K W, HE C L, YIN J Z, et al. Relevance of soot formation characteristics to equivalence ratio and CO2 addition of acetylene flame [J]. Powder Technology, 2022, 412: 117978. DOI: 10.1016/j.powtec.2022.117978.
    [18]
    SIST EN 1839: Determination of explosion limits of gases and vapours and determination of the limiting oxygen concentration (LOC) for flammable gases and vapours [S]. SIST, 2017.
    [19]
    ISO. ISO 6141: 2015 Gas analysis-contents of certificates for calibration gas mixtures [S]. Geneva: ISO, 2015.
    [20]
    PIO G, SALZANO E. Evaluation of safety parameters of light alkenes by means of detailed kinetic models [J]. Process Safety and Environmental Protection, 2018, 119: 131–137. DOI: 10.1016/j.psep.2018.07.024.
    [21]
    梁容真. 单组分气体燃料在O2/CO2气氛下的可燃极限研究 [D]. 沈阳: 东北大学冶金学院, 2020. DOI: 10.27007/d.cnki.gdbeu.2020.002827.

    LIANG R Z. Study on the flammability limit of single-component gas fuel at O2/CO2 atmosphere [D]. Shenyang: School of Metallurgy, Northeastern University, 2020. DOI: 10.27007/d.cnki.gdbeu.2020.002827.
    [22]
    ZHANG Y, SHEN W F, ZHANG H, et al. Effects of inert dilution on the propagation and extinction of lean premixed syngas/air flames [J]. Fuel, 2015, 157: 115–121. DOI: 10.1016/j.fuel.2015.05.007.
    [23]
    HU E J, JIANG X, HUANG Z H, et al. Numerical study on the effects of diluents on the laminar burning velocity of methane-air mixtures [J]. Energy & Fuels, 2012, 26(7): 4242–4252. DOI: 10.1021/ef300535s.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (28) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return