Citation: | LIU Yulong, WANG Yinjun, HUANG Lei, WU Chunping, YAN Guobin, ZHANG Yang, WANG Wentao, YU Mengfei. Process and mechanism of blasting damage and fracture of calcium conglomerate in Hushan ranium mine[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0361 |
[1] |
杨小林. 岩石爆破损伤断裂的细观机理及其力学特性研究 [J]. 岩石力学与工程学报, 2000, 19(5): 665. DOI: 10.3321/j.issn:1000-6915.2000.05.031.
YANG X L. Meso-mechanism of damage and fracture on rock blasting and its mechanical behaviors [J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(5): 665. DOI: 10.3321/j.issn:1000-6915.2000.05.031.
|
[2] |
褚怀保, 杨小林, 梁为民, 等. 煤体爆破损伤断裂过程与机理研究 [J]. 采矿与安全工程学报, 2018, 35(2): 410–414. DOI: 10.13545/j.cnki.jmse.2018.02.025.
CHU H B, YANG X L, LIANG W M, et al. Study on the damage-fracture process and mechanism of coal blasting [J]. Journal of Mining & Safety Engineering, 2018, 35(2): 410–414. DOI: 10.13545/j.cnki.jmse.2018.02.025.
|
[3] |
FAN L F, WONG L N Y. Stress wave transmission across a filled joint with different loading/unloading behavior [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 227–234. DOI: 10.1016/j.ijrmms.2012.12.046.
|
[4] |
RAINA A K. Influence of joint conditions and blast design on pre-split blasting using response surface analysis [J]. Rock Mechanics and Rock Engineering, 2019, 52(10): 4057–4070. DOI: 10.1007/s00603-019-01822-8.
|
[5] |
SINGH S P, XAVIER P. Causes, impact and control of overbreak in underground excavations [J]. Tunnelling and Underground Space Technology, 2005, 20(1): 6–71. DOI: 10.1016/j.tust.2004.05.004.
|
[6] |
李守巨, 李德, 武力, 等. 非均质岩石单轴压缩试验破坏过程细观模拟及分形特性 [J]. 煤炭学报, 2014, 39(5): 849–854. DOI: 10.13225/j.cnki.jccs.2013.0673.
LI S J, LI D, WU L, et al. Meso-simulation and fractal characteristics for uniaxial compression test of inhomogeneous rock [J]. Journal of China Coal Society, 2014, 39(5): 849–854. DOI: 10.13225/j.cnki.jccs.2013.0673.
|
[7] |
YANG R S, DING C X, YANG L Y, et al. Model experiment on dynamic behavior of jointed rock mass under blasting at high-stress conditions [J]. Tunnelling and Underground Space Technology, 2018, 74: 145–152. DOI: 10.1016/j.tust.2018.01.017.
|
[8] |
沈世伟, 廖文旺, 徐燕, 等. 不同节理间距条件下岩体双孔爆破动焦散试验研究 [J]. 煤碳学报, 2018, 43(8): 2180–2186. DOI: 10.13225/j.cnki.jccs.2017.1223.
SHEN S W, LIAO W W, XU Y, et al. Dynamic caustics test of rock mass under different joint spacing conditions with two-hole blasting [J]. Journal of China Coal Society, 2018, 43(8): 2180–2186. DOI: 10.13225/j.cnki.jccs.2017.1223.
|
[9] |
岳中文, 杨仁树, 郭东明, 等. 爆炸应力波作用下缺陷介质裂纹扩展的动态分析 [J]. 岩土力学, 2009, 30(4): 949–954. DOI: 10.16285/j.rsm.2009.04.004.
YUE Z W, YANG R S, GUO D M, et al. Dynamic analysis of crack propagation in media containing flaws under the explosive stress wave [J]. Rock and Soil Mechanics, 2009, 30(4): 949–954. DOI: 10.16285/j.rsm.2009.04.004.
|
[10] |
刘钊, 张树辉, 臧小静. 含双垂直缺陷岩体爆生裂纹扩展行为试验研究 [J]. 爆破, 2024, 41(1): 21–26,66. DOI: 10.3963/j.issn.1001-487X.2024.01.004.
LIU Z, ZHANG S H, ZANG X J. Experimental study on propagation behavior of blast-induced crack in rock mass with double vertical defects [J]. Blasting, 2024, 41(1): 21–26,66. DOI: 10.3963/j.issn.1001-487X.2024.01.004.
|
[11] |
陈勇, 王应朋, 杨玉贵, 等. 基于LCEM-GFEM方法爆炸载荷作用下含缺陷岩体损伤机理研究(英文) [J]. Journal of Central South University, 2024, 31(2): 496–510. DOI: 10.1007/s11771-024-5582-y.
CHEN Y, WANG Y P, YANG Y G, et al. Damage mechanism and fracture evolution of rock containing defects with LCEM-GFEM method under explosive load [J]. Journal of Central South University, 2024, 31(2): 496–510. DOI: 10.1007/s11771-024-5582-y.
|
[12] |
邢灏喆, 王明洋, 范鹏贤, 等. 基于高速3D-DIC技术的砂岩动力特性粒径效应研究 [J]. 爆炸与冲击, 2021, 41(11): 113101. DOI: 10.11883/bzycj-2021-0088.
XING H Z, WANG M Y, FAN P X, et al. Grain-size effect on dynamic behavior of sandstone based on high-speed 3D-DIC technique [J]. Explosion and Shock Waves, 2021, 41(11): 113101. DOI: 10.11883/bzycj-2021-0088.
|
[13] |
邱泓杰, 邱贤阳, 张舒, 等. 爆破动载下锯齿状岩-充界面胶结充填体损伤规律研究 [J/OL]. 煤炭学报: 1–14.[2024-05-13]. https://doi.org/10.13225/j.cnki.jccs.2023.1635
QIU H J, QIU X Y, ZHANG S, et al. Study on the damage pattern of the cemented backfill at the jagged rock-fill interface under dynamic loading of blasting [J/OL]. Journal of China Coal Society: 1–14[2024-05-13]. https://doi.org/10.13225/j.cnki.jccs.2023.1635.
|
[14] |
LI G W, DENG G Z, MA J G. Numerical modelling of the response of cemented paste backfill under the blasting of an adjacent ore stope [J]. Construction and Building Materials, 2022, 343: 128051. DOI: 10.1016/j.conbuildmat.2022.128051.
|
[15] |
SUAZO G, VILLAVICENCIO G. Numerical simulation of the blast response of cemented paste backfilled stopes [J]. Computers and Geotechnics, 2018, 100: 1–14. DOI: 10.1016/j.compgeo.2018.04.007.
|
[16] |
EMAD M Z, MITRI H, KELLY C. Dynamic model validation using blast vibration monitoring in mine backfill [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 107: 48–54. DOI: 10.1016/j.ijrmms.2018.04.047.
|
[17] |
JAYASINGHE L B, SHANG J L, ZHAO Z Y, et al. Numerical investigation into the blasting-induced damage characteristics of rocks considering the role of in-situ stresses and discontinuity persistence [J]. Computers and Geotechnics, 2019, 116: 103207. DOI: 10.1016/j.compgeo.2019.103207.
|
[18] |
MA G W, AN X M. Numerical simulation of blasting-induced rock fractures [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 966–975. DOI: 10.1016/j.ijrmms.2007.12.002.
|
[19] |
LEE J S, AHN S K, SAGONG M. Attenuation of blast vibration in tunneling using a pre-cut discontinuity [J] Tunnelling and Underground Space Technology, 2016, 52: 30-37. DOI: 10.1016/j.tust.2015.11.010.
|
[20] |
胡小川, 丁学正, 苏国韶, 等. 基于UDEC-GBM的矿物晶粒解理特征对硬岩石破坏过程的影响 [J]. 工程科学学报, 2022, 44(7): 1160–1170. DOI: 10.13374/j.issn2095-9389.2020.12.10.002.
HU X C, DING X Z, SU G S, et al. Effect of cleavage characteristics of mineral grains on the failure process of hard rock based on UDEC-GBM modeling [J]. Chinese Journal of Engineering, 2022, 44(7): 1160–1170. DOI: 10.13374/j.issn2095-9389.2020.12.10.002.
|
[21] |
戴俊. 爆破工程 [M]. 2版. 北京: 机械工业出版社, 2015: 97–106.
DAI J. Blasting engineering [M]. Beijing: China Machine Press, 2015: 97–106.
|
[22] |
杨小林, 王树仁. 岩石爆破损伤断裂的细观机理 [J]. 爆炸与冲击, 2000, 20(3): 247–252. DOI: 10.11883/1001-1455(2000)03-0247-6.
YANG X L, WANG S R. Meso-Mechanism of damage and fracture on rock blasting [J]. Explosion and Shock Waves, 2000, 20(3): 247–252. DOI: 10.11883/1001-1455(2000)03-0247-6.
|
[23] |
MURAKAMI Y. Stress intensity factors handbook [M]. Oxford: Pergamon Press, 1987: 97–99.
|
[24] |
HOUSEHOLDER A S. Monte Carlo method [M]. Washington, DC: U. S. Government Printing Office, 1951: 78–84.
|
[25] |
RAGHAVAN P, GHOSH S. Concurrent multi-scale analysis of elastic composites by a multi-level computational model [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(6/7/8): 497–538. DOI: 10.1016/j.cma.2003.10.007.
|
[26] |
HE C L, GAO J M, CHEN D Y, et al. Investigation of stress wave interaction and fragmentation in granite during multihole blastings [J]. IEEE Access, 2020, 8: 185187–185197. DOI: 10.1109/ACCESS.2020.3030253.
|
[27] |
YANG X D, SUN L H, SONG J L, et al. Study on the effect of bond strength on the failure mode of coarse-grained sandstone in weakly cemented stratum [J]. Minerals, 2021, 12(1): 55. DOI: 10.3390/min12010055.
|
[28] |
吴彰钰, 张锦华, 余红发, 等. 基于三维随机细观模型的珊瑚混凝土力学性能模拟 [J]. 硅酸盐学报, 2021, 49(11): 2518–2528. DOI: 10.14062/j.issn.0454-5648.20210124.
WU Z Y, ZHANG J H, YU H F, et al. Numerical analysis on mechanical properties of coral aggregate concrete using 3D random mesoscale model [J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2518–2528. DOI: 10.14062/j.issn.0454-5648.20210124.
|