• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Volume 45 Issue 2
Feb.  2025
Turn off MathJax
Article Contents
GAO You, ZHENG Ruoxin, JIANG Yuxin, WANG Lubing. Electrochemical performance degradation and safety of lithium-ion batteries containing defects induced by collision[J]. Explosion And Shock Waves, 2025, 45(2): 021422. doi: 10.11883/bzycj-2024-0368
Citation: GAO You, ZHENG Ruoxin, JIANG Yuxin, WANG Lubing. Electrochemical performance degradation and safety of lithium-ion batteries containing defects induced by collision[J]. Explosion And Shock Waves, 2025, 45(2): 021422. doi: 10.11883/bzycj-2024-0368

Electrochemical performance degradation and safety of lithium-ion batteries containing defects induced by collision

doi: 10.11883/bzycj-2024-0368
  • Received Date: 2024-09-30
  • Rev Recd Date: 2025-01-14
  • Available Online: 2024-12-25
  • Publish Date: 2025-02-01
  • Unavoidable electric vehicle collisions can cause defects in lithium-ion batteries, and whether defective batteries after minor collisions can continue to be used is still unknown. In this work, we focus on the mechanical performance and electrochemical performance of defective batteries, safety boundaries, and its failure mechanism. Firstly, three typical defects , namely indentation, 50%-offset compression defect and plate-compression defect, were prepared by quasi-static loading and drop-hammer impact with different indenters. The defective batteries did not exhibit voltage drops or temperature increases, indicating that no internal short circuits occurred. Subsequently, their mechanical and electrochemical responses were evaluated through quasi-static plate compression at a loading rate of 1 mm/min and 1C charge/discharge cycling, respectively. It was found that the defective batteries exhibited significant deterioration in mechanical performance, including earlier onset of internal short circuit, reduced short circuit force, and decreased energy absorption capacity. Defective batteries also exhibited significant electrochemical performance degradation, with greater capacity loss during cycling compared to new batteries. Further, its degradation mechanism was explained through disassembling the cells. The separator of the defective batteries exhibited significant thinning, making it more prone to rupture under secondary loading. Therefore, the mechanical failure criterion of the batteries was proposed based on the separator thickness. After 500 cycles, graphite delamination was observed in the defective batteries, whereas the defective batteries without cycling only exhibited cracking. Therefore, the degradation of electrochemical performance in defective batteries was caused by the combined effects of initial defects and cyclic aging stress. The effects of loading speed and defect type on the performance of defective cells were also discussed. Defective batteries subjected to higher loading rates exhibit greater performance degradation, which is related to inertia effects. Different types of defects lead to variations in separator thickness and graphite delamination, resulting in different levels of degradation. Results are instructive for the study of safety identification and treatment of defective lithium-ion batteries.
  • loading
  • [1]
    COMELLO S, GLENK G, REICHELSTEIN S. Transitioning to clean energy transportation services: life-cycle cost analysis for vehicle fleets [J]. Applied Energy, 2021, 285: 116408. DOI: 10.1016/j.apenergy.2020.116408.
    [2]
    MANIRATHINAM T, NARAYANAMOORTHY S, GEETHA S, et al. Assessing performance and satisfaction of micro-mobility in smart cities for sustainable clean energy transportation using novel APPRESAL method [J]. Journal of Cleaner Production, 2024, 436: 140372. DOI: 10.1016/j.jclepro.2023.140372.
    [3]
    CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488(7411): 294–303. DOI: 10.1038/nature11475.
    [4]
    CHEN B, XIONG R, LI H L, et al. Pathways for sustainable energy transition [J]. Journal of Cleaner Production, 2019, 228: 1564–1571. DOI: 10.1016/j.jclepro.2019.04.372.
    [5]
    GANDOMAN F H, JAGUEMONT J, GOUTAM S, et al. Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: basics, progress, and challenges [J]. Applied Energy, 2019, 251: 113343. DOI: 10.1016/j.apenergy.2019.113343.
    [6]
    TAO J J, WANG S L, CAO W, et al. A comprehensive review of state-of-charge and state-of-health estimation for lithium-ion battery energy storage systems [J]. Ionics, 2024, 30(10): 5903–5927. DOI: 10.1007/s11581-024-05686-z.
    [7]
    ZUBI G, DUFO-LÓPEZ R, CARVALHO M, et al. The lithium-ion battery: state of the art and future perspectives [J]. Renewable and Sustainable Energy Reviews, 2018, 89: 292–308. DOI: 10.1016/j.rser.2018.03.002.
    [8]
    DIOUF B, PODE R. Potential of lithium-ion batteries in renewable energy [J]. Renewable Energy, 2015, 76: 375–380. DOI: 10.1016/j.renene.2014.11.058.
    [9]
    LIU B H, JIA Y K, LI J, et al. Safety issues caused by internal short circuits in lithium-ion batteries [J]. Journal of Materials Chemistry A, 2018, 6(43): 21475–21484. DOI: 10.1039/C8TA08997C.
    [10]
    RUIZ V, PFRANG A, KRISTON A, et al. A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles [J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1427–1452. DOI: 10.1016/j.rser.2017.05.195.
    [11]
    SEVARIN A, FASCHING M, RAFFLER M, et al. Influence of cell selection and orientation within the traction battery on the crash safety of electric-powered two-wheelers [J]. Batteries, 2023, 9(4): 195. DOI: 10.3390/batteries9040195.
    [12]
    SUN P Y, BISSCHOP R, NIU H C, et al. A review of battery fires in electric vehicles [J]. Fire Technology, 2020, 56(4): 1361–1410. DOI: 10.1007/s10694-019-00944-3.
    [13]
    XING Y Y, LI Q M. Evaluation of the mechanical shock testing standards for electric vehicle batteries [J]. International Journal of Impact Engineering, 2024, 194: 105077. DOI: 10.1016/j.ijimpeng.2024.105077.
    [14]
    SHUAI W Q, LI E Y, WANG H. An equivalent circuit model of a deformed Li-ion battery with parameter identification [J]. International Journal of Energy Research, 2020, 44(11): 8372–8387. DOI: 10.1002/er.5500.
    [15]
    WANG G W, WU J J, ZHENG Z J, et al. Effect of deformation on safety and capacity of Li-ion batteries [J]. Batteries, 2022, 8(11): 235. DOI: 10.3390/batteries8110235.
    [16]
    LIU J, MA Z C, GUO Z X, et al. Experimental investigation on mechanical-electrochemical coupling properties of cylindrical lithium-ion batteries [J]. Energy, 2024, 293: 130536. DOI: 10.1016/j.energy.2024.130536.
    [17]
    JIA Y K, LIU B H, HONG Z G, et al. Safety issues of defective lithium-ion batteries: identification and risk evaluation [J]. Journal of Materials Chemistry A, 2020, 8(25): 12472–12484. DOI: 10.1039/D0TA04171H.
    [18]
    CHEN X P, YUAN Q, WANG T, et al. Experimental study on the dynamic behavior of prismatic lithium-ion battery upon repeated impact [J]. Engineering Failure Analysis, 2020, 115: 104667. DOI: 10.1016/j.engfailanal.2020.104667.
    [19]
    朱瑞卿, 胡玲玲, 周名哲. 锂电池多次冲击下的失效模式及损伤机制 [J]. 固体力学学报, 2023, 44(6): 795–804. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.032.

    ZHU R Q, HU L L, ZHOU M Z. Failure modes and damage mechanisms of lithium-ion batteries under repeated impacts [J]. Chinese Journal of Solid Mechanics, 2023, 44(6): 795–804. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.032.
    [20]
    魏和光, 周名哲, 朱瑞卿, 等. 受冲击荷载后未失效电池力学性能和电性能的劣化 [J]. 爆炸与冲击, 2025, 45(2): 021421. DOI: 10.11883/bzycj-2024-0312.

    WEI H G, ZHOU M Z, ZHU R Q, et al. Mechanical and electrical degradation of impaired batteries after impact loading [J]. Explosion and Shock Waves, 2025, 45(2): 021421. DOI: 10.11883/bzycj-2024-0312.
    [21]
    ZHOU D, LI H G, LI Z H, et al. Toward the performance evolution of lithium-ion battery upon impact loading [J]. Electrochimica Acta, 2022, 432: 141192. DOI: 10.1016/j.electacta.2022.141192.
    [22]
    顾丽蓉, 王敬德, 张新春, 等. 挤压/冲击工况下圆柱形锂离子电池失效的影响因素分析 [J]. 高压物理学报, 2024, 38(4): 045301. DOI: 10.11858/gywlxb.20240708.

    GU L R, WANG J D, ZHANG X C, et al. Analysis of influencing factors of failure for cylindrical lithium-ion batteries under compression/impact conditions [J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 045301. DOI: 10.11858/gywlxb.20240708.
    [23]
    LIU B H, JIA Y K, YUAN C H, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review [J]. Energy Storage Materials, 2020, 24: 85–112. DOI: 10.1016/j.ensm.2019.06.036.
    [24]
    LI J N, LI W, SONG J Y, et al. Accurate measurement of the contact resistance during internal short circuit in lithium-ion batteries [J]. Journal of the Electrochemical Society, 2022, 169(2): 020505. DOI: 10.1149/1945-7111/ac4c79.
    [25]
    SANTHANAGOPALAN S, RAMADASS P, ZHANG J. Analysis of internal short-circuit in a lithium ion cell [J]. Journal of Power Sources, 2009, 194(1): 550–557. DOI: 10.1016/j.jpowsour.2009.05.002.
    [26]
    YUAN C H, WANG L B, YIN S, et al. Generalized separator failure criteria for internal short circuit of lithium-ion battery [J]. Journal of Power Sources, 2020, 467: 228360. DOI: 10.1016/j.jpowsour.2020.228360.
    [27]
    LIU J L, DUAN Q L, QI K Z, et al. Capacity fading mechanisms and state of health prediction of commercial lithium-ion battery in total lifespan [J]. Journal of Energy Storage, 2022, 46: 103910. DOI: 10.1016/j.est.2021.103910.
    [28]
    REDONDO-IGLESIAS E, VENET P, PELISSIER S. Modelling lithium-ion battery ageing in electric vehicle applications: calendar and cycling ageing combination effects [J]. Batteries, 2020, 6(1): 1–14. DOI: 10.3390/batteries6010014.
    [29]
    LIU Y J, XIA Y, XING B B, et al. Mechanical-electrical-thermal responses of lithium-ion pouch cells under dynamic loading: a comparative study between fresh cells and aged ones [J]. International Journal of Impact Engineering, 2022, 166: 104237. DOI: 10.1016/j.ijimpeng.2022.104237.
    [30]
    WANG L B, LI J P, CHEN J Y, et al. Revealing the internal short circuit mechanisms in lithium-ion batteries upon dynamic loading based on multiphysics simulation [J]. Applied Energy, 2023, 351: 121790. DOI: 10.1016/j.apenergy.2023.121790.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (82) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return