Citation: | CAO Miao, ZHANG Chunyang, LIU Zongxing, ZHAO Zhenqiang, LIU Jun, LI Yulong. Study on the numerical simulation of aeroengine titanium alloy casing containment[J]. Explosion And Shock Waves, 2025, 45(7): 071422. doi: 10.11883/bzycj-2024-0371 |
[1] |
陈光. 航空发动机结构设计分析 [M]. 3版. 北京: 北京航空航天大学, 2023: 542–546.
|
[2] |
宣海军, 陆晓, 洪伟荣, 等. 航空发动机机匣包容性研究综述 [J]. 航空动力学报, 2010, 25(8): 1860–1870. DOI: 10.13224/j.cnki.jasp.2010.08.012.
XUAN H J, LU X, HONG W R, et al. Review of aero-engine case containment research [J]. Journal of Aerospace Power, 2010, 25(8): 1860–1870. DOI: 10.13224/j.cnki.jasp.2010.08.012.
|
[3] |
谭毅, 杨书仪, 左建华, 等. 面向包容性的航空发动机机匣研究综述 [J]. 航空工程进展, 2022, 13(6): 17–28. DOI: 10.16615/j.cnki.1674-8190.2022.06.02.
TAN Y, YANG S Y, ZUO J H, et al. Review of aero-engine casing containment research [J]. Advances in Aeronautical Science and Engineering, 2022, 13(6): 17–28. DOI: 10.16615/j.cnki.1674-8190.2022.06.02.
|
[4] |
洪杰, 马艳红. 航空燃气涡轮发动机结构与设计 [M]. 北京: 科学出版社, 2021: 76–81.
HONG J, MA Y H. Structure and design of aircraft gas turbine engine [M]. Beijing: Science Press, 2021: 76–81.
|
[5] |
中国民用航空总局. 航空发动机适航规定:CCAR-33 [S]. 北京: 中国民用航空总局, 2005: 78–79.
|
[6] |
Unite State Air Force. Engine structural integrity program: MIL-STD-1783B [S]. United States: Department of Defense, 2002: 9–10.
|
[7] |
US Department Transportation Federal Aviation Administration. Airworthiness standards: aircraft engines: FAR33 [S]. United States: Federal Aviation Administration: 1984: 81–99.
|
[8] |
HE Z K, GUO X J, XUAN H J, et al. Characteristics and mechanisms of turboshaft engine axial compressor casing containment [J]. Chinese Journal of Aeronautics, 2021, 34(1): 171–180. DOI: 10.1016/j.cja.2020.08.050.
|
[9] |
XUAN H J, WU R R. Aeroengine turbine blade containment tests using high-speed rotor spin testing facility [J]. Aerospace Science and Technology, 2006, 10(6): 501–508. DOI: 10.1016/j.ast.2006.04.006.
|
[10] |
HE Q, XUAN H J, LIU L L, et al. Perforation of aero-engine fan casing by a single rotating blade [J]. Aerospace Science and Technology, 2013, 25(1): 234–241. DOI: 10.1016/j.ast.2012.01.010.
|
[11] |
YU M Y, WANG J F, XUAN H J, et al. Simulation and experimental study of gas turbine blade tenon-root detachment on spin test [J]. Aerospace, 2024, 11(8): 629. DOI: 10.3390/aerospace11080629.
|
[12] |
徐雪, 李宏新, 冯国全. 风扇叶片飞失显式动力学仿真网格与时间步长研究 [J]. 航空发动机, 2021, 47(5): 12–18. DOI: 10.13477/j.cnki.aeroengine.2021.05.003.
XU X, LI H X, FENG G Q. Study on mesh and time step of explicit dynamic simulation for fan blade out [J]. Aeroengine, 2021, 47(5): 12–18. DOI: 10.13477/j.cnki.aeroengine.2021.05.003.
|
[13] |
MEGUID S A. Multiple blade shedding in aviation gas turbine engines: FE modeling and characterization [J]. International Journal of Mechanics and Materials in Design, 2024, 20(4): 663–670. DOI: 10.1007/s10999-023-09696-z.
|
[14] |
ZHAO Z H, WANG L F, LU K N, et al. Effect of foreign object damage on high-cycle fatigue strength of titanium alloy for aero-engine blade [J]. Engineering Failure Analysis, 2020, 118: 104842. DOI: 10.1016/j.engfailanal.2020.104842.
|
[15] |
MOHAMMAD Z, GUPTA P K, BAQI A. Experimental and numerical investigations on the behavior of thin metallic plate targets subjected to ballistic impact [J]. International Journal of Impact Engineering, 2020, 146: 103717. DOI: 10.1016/j.ijimpeng.2020.103717.
|
[16] |
张铁纯, 王陆军, 胡昂, 等. 弹体撞击角度对TC4薄板抗半球形弹冲击性能影响 [J]. 机械强度, 2021, 43(3): 546–553. DOI: 10.16579/j.issn.1001.9669.2021.03.006.
ZHANG T C, WANG L J, HU A, et al. The effect of impact angle on the ballistic performance of TC4 target against the impact of hemi-spherical projectile [J]. Journal of Mechanical Strength, 2021, 43(3): 546–553. DOI: 10.16579/j.issn.1001.9669.2021.03.006.
|
[17] |
CARNEY K S, PEREIRA J M, REVILOCK D M, et al. Jet engine fan blade containment using an alternate geometry [J]. International Journal of Impact Engineering, 2009, 36(5): 720–728. DOI: 10.1016/j.ijimpeng.2008.10.002.
|
[18] |
ZHANG H B, HU D Y, YE X B, et al. A simplified Johnson-Cook model of TC4T for aeroengine foreign object damage prediction [J]. Engineering Fracture Mechanics, 2022, 269: 108523. DOI: 10.1016/j.engfracmech.2022.108523.
|
[19] |
周伦, 苏兴亚, 敬霖, 等. 6061-T6铝合金动态拉伸本构关系及失效行为 [J]. 爆炸与冲击, 2022, 42(9): 091407. DOI: 10.11883/bzycj-2022-0154.
ZHOU L, SU X Y, JING L, et al. Dynamic tensile constitutive relationship and failure behavior of 6061-T6 aluminum alloy [J]. Explosion and Shock Waves, 2022, 42(9): 091407. DOI: 10.11883/bzycj-2022-0154.
|
[20] |
JOHNSON G R, COOK W H. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures [C]//Proceedings of the 7th International Symposium of Ballistics. The Hague, The Netherlands: American Defense Preparedness Association, 1983: 541-547.
|
[21] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
|
[22] |
HALLQUIST J O. LS-DYNA keyword user's manual (version 970) [M]. Livermore, CA, USA: Livermore Software Technology Corporation, 2003: 299-800.
|
[23] |
惠旭龙, 牟让科, 白春玉, 等. TC4钛合金动态力学性能及本构模型研究 [J]. 振动与冲击, 2016, 35(22): 161–168. DOI: 10.13465/j.cnki.jvs.2016.22.024.
HUI X L, MU R K, BAI C Y, et al. Dynamic mechanical property and constitutive model for TC4 titanium alloy [J]. Journal of Vibration and Shock, 2016, 35(22): 161–168. DOI: 10.13465/j.cnki.jvs.2016.22.024.
|
[24] |
LIU J, ZHENG B L, ZHANG K, et al. Ballistic performance and energy absorption characteristics of thin nickel-based alloy plates at elevated temperatures [J]. International Journal of Impact Engineering, 2019, 126: 160–171. DOI: 10.1016/j.ijimpeng.2018.12.012.
|