• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Volume 45 Issue 7
Jul.  2025
Turn off MathJax
Article Contents
CAO Miao, ZHANG Chunyang, LIU Zongxing, ZHAO Zhenqiang, LIU Jun, LI Yulong. Study on the numerical simulation of aeroengine titanium alloy casing containment[J]. Explosion And Shock Waves, 2025, 45(7): 071422. doi: 10.11883/bzycj-2024-0371
Citation: CAO Miao, ZHANG Chunyang, LIU Zongxing, ZHAO Zhenqiang, LIU Jun, LI Yulong. Study on the numerical simulation of aeroengine titanium alloy casing containment[J]. Explosion And Shock Waves, 2025, 45(7): 071422. doi: 10.11883/bzycj-2024-0371

Study on the numerical simulation of aeroengine titanium alloy casing containment

doi: 10.11883/bzycj-2024-0371
  • Received Date: 2024-09-30
  • Rev Recd Date: 2024-11-30
  • Available Online: 2024-12-10
  • Publish Date: 2025-07-05
  • The containment process of aero-engine casing is very complex, which involves large deformation, material viscoplasticity and nonlinear dynamic response of structural elements. To meet the fan casing containment assessment requirements of engine, a new method combining ballistic impact test and finite element analysis is proposed to evaluate the casing containment capability. A blade-liked projectile was used to impact the half ring simulator to obtain the impact resistance of the titanium alloy casing. The high-speed cameras were positioned perpendicular to the projectile's trajectory to accurately capture and measure its velocities both before and after impact.. The DIC (digital image correlation) technology is used to determine the deformation field of the half ring simulator. Based on the contact-impact dynamics software, a corresponding numerical simulation model was established. The residual velocity of the projectile, radial deformation of the target, and the morphology of structural damage of numerical predictions are compared with those of experimental results. The good agreement between the two results indicated the accuracy of the numerical method. Under the low energy impact, the projectile was rebound, and the half ring absorbed energy with bulge. Whereas in the high energy impact, the projectile penetrated the half ring target and result in tear in the rear surface. Finally, the validated numerical simulation method was employed to simulate the real fan blade/casing containment process, and the effect of the blade rotate speed and the blade size on casing containment are studied. The results show that the fan casing in rotating state can contain more impact energy than that in ballistic impact test. It is suggested that the design for the ballistic impact test can be scaled to 0.76 times the size of the real containment system. Additionally, a parametric correlation model is developed between the casing containment capacity and the characteristics of the released blade, especially the rotate speed and size. It is found that the internal energy of the casing is in a quartic relationship with the blade released speed and a quadratic relationship with the blade size. Moreover, as the blade size increases, the critical containment speed of the casing decreases exponentially.
  • loading
  • [1]
    陈光. 航空发动机结构设计分析 [M]. 3版. 北京: 北京航空航天大学, 2023: 542–546.
    [2]
    宣海军, 陆晓, 洪伟荣, 等. 航空发动机机匣包容性研究综述 [J]. 航空动力学报, 2010, 25(8): 1860–1870. DOI: 10.13224/j.cnki.jasp.2010.08.012.

    XUAN H J, LU X, HONG W R, et al. Review of aero-engine case containment research [J]. Journal of Aerospace Power, 2010, 25(8): 1860–1870. DOI: 10.13224/j.cnki.jasp.2010.08.012.
    [3]
    谭毅, 杨书仪, 左建华, 等. 面向包容性的航空发动机机匣研究综述 [J]. 航空工程进展, 2022, 13(6): 17–28. DOI: 10.16615/j.cnki.1674-8190.2022.06.02.

    TAN Y, YANG S Y, ZUO J H, et al. Review of aero-engine casing containment research [J]. Advances in Aeronautical Science and Engineering, 2022, 13(6): 17–28. DOI: 10.16615/j.cnki.1674-8190.2022.06.02.
    [4]
    洪杰, 马艳红. 航空燃气涡轮发动机结构与设计 [M]. 北京: 科学出版社, 2021: 76–81.

    HONG J, MA Y H. Structure and design of aircraft gas turbine engine [M]. Beijing: Science Press, 2021: 76–81.
    [5]
    中国民用航空总局. 航空发动机适航规定:CCAR-33 [S]. 北京: 中国民用航空总局, 2005: 78–79.
    [6]
    Unite State Air Force. Engine structural integrity program: MIL-STD-1783B [S]. United States: Department of Defense, 2002: 9–10.
    [7]
    US Department Transportation Federal Aviation Administration. Airworthiness standards: aircraft engines: FAR33 [S]. United States: Federal Aviation Administration: 1984: 81–99.
    [8]
    HE Z K, GUO X J, XUAN H J, et al. Characteristics and mechanisms of turboshaft engine axial compressor casing containment [J]. Chinese Journal of Aeronautics, 2021, 34(1): 171–180. DOI: 10.1016/j.cja.2020.08.050.
    [9]
    XUAN H J, WU R R. Aeroengine turbine blade containment tests using high-speed rotor spin testing facility [J]. Aerospace Science and Technology, 2006, 10(6): 501–508. DOI: 10.1016/j.ast.2006.04.006.
    [10]
    HE Q, XUAN H J, LIU L L, et al. Perforation of aero-engine fan casing by a single rotating blade [J]. Aerospace Science and Technology, 2013, 25(1): 234–241. DOI: 10.1016/j.ast.2012.01.010.
    [11]
    YU M Y, WANG J F, XUAN H J, et al. Simulation and experimental study of gas turbine blade tenon-root detachment on spin test [J]. Aerospace, 2024, 11(8): 629. DOI: 10.3390/aerospace11080629.
    [12]
    徐雪, 李宏新, 冯国全. 风扇叶片飞失显式动力学仿真网格与时间步长研究 [J]. 航空发动机, 2021, 47(5): 12–18. DOI: 10.13477/j.cnki.aeroengine.2021.05.003.

    XU X, LI H X, FENG G Q. Study on mesh and time step of explicit dynamic simulation for fan blade out [J]. Aeroengine, 2021, 47(5): 12–18. DOI: 10.13477/j.cnki.aeroengine.2021.05.003.
    [13]
    MEGUID S A. Multiple blade shedding in aviation gas turbine engines: FE modeling and characterization [J]. International Journal of Mechanics and Materials in Design, 2024, 20(4): 663–670. DOI: 10.1007/s10999-023-09696-z.
    [14]
    ZHAO Z H, WANG L F, LU K N, et al. Effect of foreign object damage on high-cycle fatigue strength of titanium alloy for aero-engine blade [J]. Engineering Failure Analysis, 2020, 118: 104842. DOI: 10.1016/j.engfailanal.2020.104842.
    [15]
    MOHAMMAD Z, GUPTA P K, BAQI A. Experimental and numerical investigations on the behavior of thin metallic plate targets subjected to ballistic impact [J]. International Journal of Impact Engineering, 2020, 146: 103717. DOI: 10.1016/j.ijimpeng.2020.103717.
    [16]
    张铁纯, 王陆军, 胡昂, 等. 弹体撞击角度对TC4薄板抗半球形弹冲击性能影响 [J]. 机械强度, 2021, 43(3): 546–553. DOI: 10.16579/j.issn.1001.9669.2021.03.006.

    ZHANG T C, WANG L J, HU A, et al. The effect of impact angle on the ballistic performance of TC4 target against the impact of hemi-spherical projectile [J]. Journal of Mechanical Strength, 2021, 43(3): 546–553. DOI: 10.16579/j.issn.1001.9669.2021.03.006.
    [17]
    CARNEY K S, PEREIRA J M, REVILOCK D M, et al. Jet engine fan blade containment using an alternate geometry [J]. International Journal of Impact Engineering, 2009, 36(5): 720–728. DOI: 10.1016/j.ijimpeng.2008.10.002.
    [18]
    ZHANG H B, HU D Y, YE X B, et al. A simplified Johnson-Cook model of TC4T for aeroengine foreign object damage prediction [J]. Engineering Fracture Mechanics, 2022, 269: 108523. DOI: 10.1016/j.engfracmech.2022.108523.
    [19]
    周伦, 苏兴亚, 敬霖, 等. 6061-T6铝合金动态拉伸本构关系及失效行为 [J]. 爆炸与冲击, 2022, 42(9): 091407. DOI: 10.11883/bzycj-2022-0154.

    ZHOU L, SU X Y, JING L, et al. Dynamic tensile constitutive relationship and failure behavior of 6061-T6 aluminum alloy [J]. Explosion and Shock Waves, 2022, 42(9): 091407. DOI: 10.11883/bzycj-2022-0154.
    [20]
    JOHNSON G R, COOK W H. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures [C]//Proceedings of the 7th International Symposium of Ballistics. The Hague, The Netherlands: American Defense Preparedness Association, 1983: 541-547.
    [21]
    JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [22]
    HALLQUIST J O. LS-DYNA keyword user's manual (version 970) [M]. Livermore, CA, USA: Livermore Software Technology Corporation, 2003: 299-800.
    [23]
    惠旭龙, 牟让科, 白春玉, 等. TC4钛合金动态力学性能及本构模型研究 [J]. 振动与冲击, 2016, 35(22): 161–168. DOI: 10.13465/j.cnki.jvs.2016.22.024.

    HUI X L, MU R K, BAI C Y, et al. Dynamic mechanical property and constitutive model for TC4 titanium alloy [J]. Journal of Vibration and Shock, 2016, 35(22): 161–168. DOI: 10.13465/j.cnki.jvs.2016.22.024.
    [24]
    LIU J, ZHENG B L, ZHANG K, et al. Ballistic performance and energy absorption characteristics of thin nickel-based alloy plates at elevated temperatures [J]. International Journal of Impact Engineering, 2019, 126: 160–171. DOI: 10.1016/j.ijimpeng.2018.12.012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (140) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return