• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
TAO Zihao, LI Xianglong, WNAG Jianguo, HU Qiwen, ZUO Ting, HU Tao. Three-dimensional crack propagation behaviors of transparent brittle materials under blasting load[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0385
Citation: TAO Zihao, LI Xianglong, WNAG Jianguo, HU Qiwen, ZUO Ting, HU Tao. Three-dimensional crack propagation behaviors of transparent brittle materials under blasting load[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0385

Three-dimensional crack propagation behaviors of transparent brittle materials under blasting load

doi: 10.11883/bzycj-2024-0385
  • Received Date: 2024-10-11
  • Rev Recd Date: 2025-04-27
  • Available Online: 2025-05-15
  • The crack propagation behavior of brittle materials, such as rock, is often challenging to capture under explosive loading conditions. To address this issue, model experiments were conducted based on the theory of explosive damage, utilizing transparent polymethyl methacrylate (PMMA) as a surrogate material to simulate the fracture response of brittle materials. High-speed photography and CT scanning were employed to investigate the dynamic fracture process and three-dimensional crack evolution under blast loading. In addition, 3D scanning technology was used to reconstruct the morphology of cracks and characterize the fracture surface features. The results indicate that under the sustained action of multi-stage explosive energy, cracks undergo repeated initiation and propagation. Initial cracks induced by shock waves exhibit high density and a “fish scale” pattern, primarily concentrated around the blast hole. In contrast, secondary cracks driven by detonation gases have a lower density and extend outward in “ear-shaped” or “dagger-shaped” forms. As the distance from the explosion center increases, the crack surface morphology transitions from rugged to microwave-like textures, with improved flatness. Specifically, the elevation variance of the fracture surface decreases from 0.796 to 0.586, while the maximum height reduces from 3.2 mm to 2.8 mm, representing a 12.5% reduction. Moreover, the failure mode of the material shifts from compressive-shear to tensile failure with increasing distance from the explosion center. This shift is accompanied by a decline in both the fractal dimension of the crack distribution and the overall damage degree of the model.
  • loading
  • [1]
    杨仁树, 丁晨曦, 王雁冰, 等. 爆炸应力波与爆生气体对被爆介质作用效应研究 [J]. 岩石力学与工程学报, 2016, 35(S2): 3501–3506. DOI: 10.13722/j.cnki.jrme.2016.0066.

    YANG R S, DING C X, WANG Y B, et al. Action-effect study of medium under loading of explosion stress wave and explosion gas [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3501–3506. DOI: 10.13722/j.cnki.jrme.2016.0066.
    [2]
    杨仁树, 丁晨曦, 杨国梁, 等. 微差爆破的爆生裂纹扩展特性试验研究 [J]. 振动与冲击, 2017, 36(24): 97–102. DOI: 10.13465/j.cnki.jvs.2017.24.015.

    YANG R S, DING C X, YANG G L, et al. Tests for blasting induced crack propagation characteristics of short-delay blasting [J]. Journal of Vibration and Shock, 2017, 36(24): 97–102. DOI: 10.13465/j.cnki.jvs.2017.24.015.
    [3]
    岳中文, 张士春, 邱鹏, 等. 切缝药包微差爆破爆生裂纹扩展机理 [J]. 煤炭学报, 2018, 43(3): 638–645. DOI: 10.13225/j.cnki.jccs.2017.0889.

    YUE Z W, ZHANG S C, QIU P, et al. Mechanism of explosive crack propagation with slotted cartridge millisecond blasting [J]. Journal of China Coal Society, 2018, 43(3): 638–645. DOI: 10.13225/j.cnki.jccs.2017.0889.
    [4]
    李清, 徐文龙, 郭洋, 等. 柱状炮孔端部爆生裂纹动态扩展力学行为研究 [J]. 岩石力学与工程学报, 2019, 38(2): 267–275. DOI: 10.13722/j.cnki.jrme.2018.1096.

    LI Q, XU W L, GUO Y, et al. Study on mechanical behaviors of crack dynamic propagation at the end of cylinder blastholes [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 267–275. DOI: 10.13722/j.cnki.jrme.2018.1096.
    [5]
    郭洋, 李清, 杨仁树, 等. 三维模型柱状药包爆生裂纹扩展规律研究 [J]. 振动与冲击, 2020, 39(10): 133–140,184. DOI: 10.13465/j.cnki.jvs.2020.10.018.

    GUO Y, LI Q, YANG R S, et al. Study on crack propagation law of cylindrical charges in three-dimensional models [J]. Journal of Vibration and Shock, 2020, 39(10): 133–140,184. DOI: 10.13465/j.cnki.jvs.2020.10.018.
    [6]
    杨立云, 丁晨曦, 郑立双, 等. 初始静态压应力场中爆生裂纹的扩展行为 [J]. 岩土工程学报, 2018, 40(7): 1322–1327. DOI: 10.11779/CJGE201807020.

    YANG L Y, DING C X, ZHENG L S, et al. Evolution of blasting cracks in different static compression fields [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1322–1327. DOI: 10.11779/CJGE201807020.
    [7]
    马泗洲, 刘科伟, 杨家彩, 等. 初始应力下岩体爆破损伤特性及破裂机理 [J]. 爆炸与冲击, 2023, 43(10): 105201. DOI: 10.11883/bzycj-2023-0151.

    MA S Z, LIU K W, YANG J C, et al. Blast-induced damage characteristics and fracture mechanism of rock mass under initial stress [J]. Explosion and Shock Waves, 2023, 43(10): 105201. DOI: 10.11883/bzycj-2023-0151.
    [8]
    岳中文, 田世颖, 张士春, 等. 单向围压作用下切缝药包爆破爆生裂纹扩展规律的研究 [J]. 振动与冲击, 2019, 38(23): 186–195. DOI: 10.13465/j.cnki.jvs.2019.23.027.

    YUE Z W, TIAN S Y, ZHANG S C, et al. Expanding law of cracks formed by slotted cartridge blast under unidirectional confining pressure [J]. Journal of Vibration and Shock, 2019, 38(23): 186–195. DOI: 10.13465/j.cnki.jvs.2019.23.027.
    [9]
    葛进进, 徐颖, 程琳, 等. 深部岩石爆破主裂纹扩展方向与地应力的关系 [J]. 振动与冲击, 2023, 42(4): 54–64. DOI: 10.13465/j.cnki.jvs.2023.04.007.

    GE J J, XU Y, CHENG L, et al. Relationship between in-situ stress and propagation direction of main cracks induced by blasting [J]. Journal of Vibration and Shock, 2023, 42(4): 54–64. DOI: 10.13465/j.cnki.jvs.2023.04.007.
    [10]
    刘健, 刘泽功, 高魁, 等. 不同装药模式爆破载荷作用下煤层裂隙扩展特征试验研究 [J]. 岩石力学与工程学报, 2016, 35(4): 735–742. DOI: 10.13722/j.cnki.jrme.2015.0865.

    LIU J, LIU Z G, GAO K, et al. Experimental study of extension characters of cracks in coal seam under blasting load with different charging modes [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(4): 735–742. DOI: 10.13722/j.cnki.jrme.2015.0865.
    [11]
    马军, 汪旭光, 李祥龙, 等. 不耦合装药刻痕爆破裂纹的动态力学特征及损伤分形规律实验 [J]. 兵工学报, 2023, 44(12): 3676–3686. DOI: 10.12382/bgxb.2022.1270.

    MA J, WANG X G, LI X L, et al. Experiment on dynamic mechanical characteristics and damage fractal law of crack in decoupled charge scratch blasting [J]. Acta Armamentarii, 2023, 44(12): 3676–3686. DOI: 10.12382/bgxb.2022.1270.
    [12]
    DAEHNKE A, ROSSMANITH H P, NAPIER J A L. Gas pressurisation of blast-induced conical cracks [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3/4/): 263.e1–263.17. DOI: 10.1016/S1365-1609(97)00282-7.
    [13]
    FORQUIN P, NASRAOUI M, RUSINEK A, et al. Experimental study of the confined behaviour of PMMA under quasi-static and dynamic loadings [J]. International Journal of Impact Engineering, 2012, 40/41: 46–57. DOI: 10.1016/j.ijimpeng.2011.09.007.
    [14]
    沈世伟, 李国良, 李冬, 等. 不同角度预制裂隙条件下双孔爆破裂纹扩展规律 [J]. 煤炭学报, 2019, 44(10): 3049–3057. DOI: 10.13225/j.cnki.jccs.2018.1362.

    SHEN S W, LI G L, LI D, et al. Crack propagation law of two-hole blasting under different angles of prefabricated fissure [J]. Journal of China Coal Society, 2019, 44(10): 3049–3057. DOI: 10.13225/j.cnki.jccs.2018.1362.
    [15]
    王雁冰, 商禹智, 石震鑫, 等. 定向断裂双孔爆破含缺陷介质裂纹扩展的动焦散试验 [J]. 爆破, 2018, 35(1): 15–20,48. DOI: 10.3963/j.issn.1001-487X.2018.01.003.

    WANG Y B, SHANG Y Z, SHI Z X, et al. Dynamic caustics experiment on crack propagation in defective medium by directional breaking with double hole blasting [J]. Blasting, 2018, 35(1): 15–20,48. DOI: 10.3963/j.issn.1001-487X.2018.01.003.
    [16]
    王雁冰, 杨仁树, 丁晨曦, 等. 双孔爆炸应力波作用下缺陷介质裂纹扩展的动焦散试验 [J]. 煤炭学报, 2016, 41(7): 1755–1761. DOI: 10.13225/j.cnki.jccs.2015.0370.

    WANG Y B, YANG R S, DING C X, et al. Dynamic caustics experiment on crack propagation of defective medium under the effect of explosive stress waves of double holes [J]. Journal of China Coal Society, 2016, 41(7): 1755–1761. DOI: 10.13225/j.cnki.jccs.2015.0370.
    [17]
    郭洋, 李清, 徐文龙, 等. 条形药包爆破预制贯通裂纹动态断裂过程研究 [J]. 岩土力学, 2018, 39(10): 3882–3890. DOI: 10.16285/j.rsm.2018.0219.

    GUO Y, LI Q, XU W L, et al. Dynamic fracture process of a pre-crack under linear charge explosion [J]. Rock and Soil Mechanics, 2018, 39(10): 3882–3890. DOI: 10.16285/j.rsm.2018.0219.
    [18]
    JEONG H, JEON B, CHOI S, et al. Fracturing behavior around a blasthole in a brittle material under blasting loading [J]. International Journal of Impact Engineering, 2020, 140: 103562. DOI: 10.1016/j.ijimpeng.2020.103562.
    [19]
    XIE L X, LU W B, ZHANG Q B, et al. Damage evolution mechanisms of rock in deep tunnels induced by cut blasting [J]. Tunnelling and Underground Space Technology, 2016, 58: 257–270. DOI: 10.1016/j.tust.2016.06.004.
    [20]
    PETROV Y V. Structural-temporal approach to modeling of fracture dynamics in brittle media [M]//ZHAO J, LI J C. Rock Dynamics and Applications-State of the Art. London: CRC Press, 2013: 101-110.
    [21]
    TAO J, YANG X G, LI H T, et al. Numerical investigation of blast-induced rock fragmentation [J]. Computers and Geotechnics, 2020, 128: 103846. DOI: 10.1016/j.compgeo.2020.103846.
    [22]
    BANADAKI M M D, MOHANTY B. Numerical simulation of stress wave induced fractures in rock [J]. International Journal of Impact Engineering, 2012, 40/41: 16-25. DOI: 10.1016/j.ijimpeng.2011.08.010.
    [23]
    CHEN B, SHEN B T, ZHANG S C, et al. 3D morphology and formation mechanism of fractures developed by true triaxial stress [J]. International Journal of Mining Science and Technology, 2022, 32(6): 1273–1284. DOI: 10.1016/j.ijmst.2022.09.002.
    [24]
    FENG X T, KONG R, ZHANG X W, et al. Experimental study of failure differences in hard rock under true triaxial compression [J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 2109–2122. DOI: 10.1007/s00603-018-1700-1.
    [25]
    ZHU S, ZHENG J H, ZHU Z D, et al. Experiments on three-dimensional flaw dynamic evolution of transparent rock-like material under osmotic pressure [J]. Tunnelling and Underground Space Technology, 2022, 128: 104624. DOI: 10.1016/j.tust.2022.104624.
    [26]
    LIU Y, HUANG D, CEN D F, et al. Tensile strength and fracture surface morphology of granite under confined direct tension test [J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 4755–4769. DOI: 10.1007/s00603-021-02543-7.
    [27]
    左进京, 杨仁树, 龚敏, 等. 分段装药爆炸应变场与裂隙场分布规律 [J]. 爆炸与冲击, 2023, 43(3): 035101. DOI: 10.11883/bzycj-2022-0333.

    ZUO J J, YANG R S, GONG M, et al. On the distribution of explosion strain field and fracture field in segment charge [J]. Explosion and Shock Waves, 2023, 43(3): 035101. DOI: 10.11883/bzycj-2022-0333.
    [28]
    周星源, 岳中文, 金庆雨, 等. 反射爆炸应力波作用下动静裂纹的贯通机理[J/OL]. 爆炸与冲击, 1–16. DOI: 10.11883/bzycj-2024-0409.

    ZHOU X, YUE Z, JIN Q, et al. Experimental study on the influence of the reflected explosiveStress waves on the dynamic crack propagation characteristics[J/OL]. Explosion and Shock Waves, 1–16. DOI: 10.11883/bzycj-2024-0409.
    [29]
    王雁冰, 付代睿, 李杨, 等. 不同耦合介质爆破裂纹动态扩展特性研究 [J]. 力学与实践, 2023, 45(5): 1021–1032. DOI: 10.6052/1000-0879-23-327.

    WANG Y B, FU D R, LI Y, et al. Study on dynamic propagation characteristics of blasting cracks in different coupling media [J]. Mechanics in Engineering, 2023, 45(5): 1021–1032. DOI: 10.6052/1000-0879-23-327.
    [30]
    李成孝, 张渊通, 安晨. 单侧开半圆孔PMMA试件Ⅰ型和Ⅰ-Ⅱ混合型裂纹动态扩展及数值模拟研究 [J]. 矿业科学学报, 2020, 5(5): 490–501. DOI: 10.19606/j.cnki.jmst.2020.05.003.

    LI C X, ZHANG Y T, AN C. Study on the dynamic propagation and numerical simulation of mode I and mixed mode I-II cracks in PMMA specimens with unilateral semicircular holes [J]. Journal of Mining Science and Technology, 2020, 5(5): 490–501. DOI: 10.19606/j.cnki.jmst.2020.05.003.
    [31]
    孙强, 李雪东, 姚腾飞, 等. 基于DIC的爆炸加载下脆性材料裂纹扩展规律的试验研究 [J]. 爆炸与冲击, 2019, 39(10): 103102. DOI: 10.11883/bzycj-2018-0308.

    SUN Q, LI X D, YAO T F, et al. Experimental study on crack propagation of brittle materials based on DIC under explosive loading based on DIC [J]. Explosion and Shock Waves, 2019, 39(10): 103102. DOI: 10.11883/bzycj-2018-0308.
    [32]
    SCHÖLLMANN M, RICHARD H A, KULLMER G, et al. A new criterion for the prediction of crack development in multiaxially loaded structures [J]. International Journal of Fracture, 2002, 117(2): 129–141. DOI: 10.1023/A:1020980311611.
    [33]
    RICHARD H A, SCHRAMM B, SCHIRMEISEN N H. Cracks on Mixed Mode Loading - Theories, experiments, simulations [J]. International Journal of Fatigue, 2014, 62: 93–103. DOI: 10.1016/j.ijfatigue.2013.06.019.
    [34]
    WANG J, REN L, XIE L Z, et al. Maximum mean principal stress criterion for three-dimensional brittle fracture [J]. International Journal of Solids and Structures, 2016, 102/103: 142–154. DOI: 10.1016/j.ijsolstr.2016.10.009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (155) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return