Citation: | ZHANG Yihan, LIU Yuzhe, WANG Yang, ZHAN Xianghao, ZHOU Zhou, WANG Lizhen, FAN Yubo. Advances in finite element models of the human head for traumatic brain injury research[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0393 |
[1] |
MAAS A I R, MENON D K, MANLEY G T, et al. Traumatic brain injury: progress and challenges in prevention, clinical care, and research [J]. The Lancet Neurology, 2022, 21(11): 1004–1060. DOI: 10.1016/S1474-4422(22)00309-X.
|
[2] |
WILSON L, STEWART W, DAMS-O’CONNOR K, et al. The chronic and evolving neurological consequences of traumatic brain injury [J]. The Lancet Neurology, 2017, 16(10): 813–825. DOI: 10.1016/S1474-4422(17)30279-X.
|
[3] |
HOOFIEN D, GILBOA A, VAKIL E, et al. Traumatic brain injury (TBI) 10-20 years later: a comprehensive outcome study of psychiatric symptomatology, cognitive abilities and psychosocial functioning [J]. Brain Injury, 2001, 15(3): 189–209. DOI: 10.1080/026990501300005659.
|
[4] |
HAWRYLUK G W, MANLEY G T. Classification of traumatic brain injury: past, present, and future [J]. Handbook of clinical neurology, 2015, 127: 15–21. DOI: 10.1016/B978-0-444-52892-6.00002-7.
|
[5] |
TSE K M, LIM S, TAN V B C, et al. A Review of Head Injury and Finite Element Head Models [J]. American Journal of Engineering, Technology and Society, 2014, 1: 28–52.
|
[6] |
GREVE M W, ZINK B J. Pathophysiology of traumatic brain injury [J]. Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine, 2009, 76(2): 97–104. DOI: 10.1002/msj.20104.
|
[7] |
ZHAN X H, OEUR A, LIU Y Z, et al. Translational models of mild traumatic brain injury tissue biomechanics [J]. Current Opinion in Biomedical Engineering, 2022, 24: 100422. DOI: 10.1016/j.cobme.2022.100422.
|
[8] |
SMITH D H, MEANEY D F, SHULL W H. Diffuse Axonal Injury in Head Trauma [J]. The Journal of Head Trauma Rehabilitation, 2003, 18(4): 307. DOI: 10.1097/00001199-200307000-00003.
|
[9] |
GRAHAM N S N, JOLLY A, ZIMMERMAN K, et al. Diffuse axonal injury predicts neurodegeneration after moderate–severe traumatic brain injury [J]. Brain, 2020, 143(12): 3685–3698. DOI: 10.1093/brain/awaa316.
|
[10] |
HARDY W N, FOSTER C D, MASON M J, et al. Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray [J]. Stapp Car Crash Journal, 2001, 45: 337–368. DOI: 10.4271/2001-22-0016.
|
[11] |
NAHUM A M, SMITH R, WARD C C. Intracranial pressure dynamics during head impact: SAE Technical Paper 770922 [R]. Warrendale: SAE International, 1977. DOI: 10.4271/770922.
|
[12] |
ALSHAREEF A, GIUDICE J S, FORMAN J, et al. Biomechanics of the Human Brain during Dynamic Rotation of the Head [J]. Journal of Neurotrauma, 2020, 37(13): 1546–1555. DOI: 10.1089/neu.2019.6847.
|
[13] |
ZHOU Z, LI X G, LIU Y Z, et al. Brain strain rate response: addressing computational ambiguity and experimental data for model validation [J]. Brain Multiphysics, 2023, 4: 100073. DOI: 10.1016/j.brain.2023.100073.
|
[14] |
GUETTLER A J, RAMACHANDRA R, BOLTE J, et al. Kinematics response of the PMHS brain to rotational loading of the head: development of experimental methods and analysis of preliminary data: SAE Technical Paper 2018-01-0547 [R]. SAE Technical Paper, 2018. DOI: 10.4271/2018-01-0547.
|
[15] |
ZHOU Z, LI X G, KLEIVEN S, et al. Brain strain from motion of sparse markers [C]//Proceedings of the 63rd Stapp Car Crash Conference. SAE, 2020. DOI: 10.4271/2019-22-0001.
|
[16] |
DIXIT P, LIU G R. A Review on Recent Development of Finite Element Models for Head Injury Simulations [J]. Archives of Computational Methods in Engineering, 2017, 24(4): 979–1031. DOI: 10.1007/s11831-016-9196-x.
|
[17] |
TAJRAN J, GOSMAN A A. Anatomy, head and neck, scalp [M]//StatPearls. Treasure Island (FL): StatPearls Publishing, 2024.
|
[18] |
ORR T J, LESHA E, KRAMER A H, et al. Traumatic brain injury: a comprehensive review of biomechanics and molecular pathophysiology [J]. World Neurosurgery, 2024, 185: 74–88. DOI: 10.1016/j.wneu.2024.01.084.
|
[19] |
RUAN J, PRASAD P. The effects of skull thickness variations on human head dynamic impact responses [J]. Stapp car crash journal, 2001, 45: 395–414. DOI: 10.4271/2001-22-0018.
|
[20] |
MEANEY D F, OLVEY S, GENNARELLI T. Biomechanical basis of traumatic brain injury [J]. Youmans & Winn Neurological Surgery, 2016, 4: 2755–2764. DOI: 10.1016/b978-1-4160-5316-3.00328-2.
|
[21] |
KEATING C E, CULLEN D K. Mechanosensation in traumatic brain injury [J]. Neurobiology of Disease, 2021, 148: 105210. DOI: 10.1016/j.nbd.2020.105210.
|
[22] |
JIN X, YANG K H, KING A I. Mechanical properties of bovine pia–arachnoid complex in shear [J]. Journal of Biomechanics, 2011, 44(3): 467–474. DOI: 10.1016/j.jbiomech.2010.09.035.
|
[23] |
YANG S C, TANG J S, NIE B B, et al. Assessment of brain injury characterization and influence of modeling approaches [J]. Scientific Reports, 2022, 12(1): 13597. DOI: 10.1038/s41598-022-16713-2.
|
[24] |
LÜDERS E, STEINMETZ H, JÄNCKE L. Brain size and grey matter volume in the healthy human brain [J]. NeuroReport, 2002, 13(17): 2371. DOI: 10.1097/00001756-200212030-00040.
|
[25] |
康越, 马天, 黄献聪, 等. 颅脑爆炸伤数值模拟研究进展: 建模、力学机制及防护 [J]. 爆炸与冲击, 2023, 43(6): 3–38. DOI: 10.11883/bzycj-2022-0521.
KANG Y, MA T, HUANG X C, et al. Advances in numerical simulation of blast-induced traumatic brain injury: modeling, mechanical mechanism and protection [J]. Explosion and Shock Waves, 2023, 43(6): 3–38. DOI: 10.11883/bzycj-2022-0521.
|
[26] |
KLEIVEN S, HARDY W N. Correlation of an FE model of the human head with local brain motion--consequences for injury prediction [J]. Stapp Car Crash Journal, 2002, 46: 123-144. DOI: 10.4271/2002-22-0007.
|
[27] |
KLEIVEN S. Predictors for traumatic brain injuries evaluated through accident reconstructions [J]. Stapp car crash journal, 2007, 51: 81–114. DOI: 10.4271/2007-22-0003.
|
[28] |
KING A I, HARDY W N, MASON M J, et al. Comparison of relative motion between the brain and skull of the human cadaver for rotation in the coronal and sagittal planes [C]//Proceedings of the 4th World Congress of Biomechanics. 2002.
|
[29] |
HO J, KLEIVEN S. Dynamic response of the brain with vasculature: A three-dimensional computational study [J]. Journal of Biomechanics, 2007, 40(13): 3006–3012. DOI: 10.1016/j.jbiomech.2007.02.011.
|
[30] |
YANG K H, MAO H J, WAGNER C, et al. Modeling of the brain for injury prevention [M]//BILSTON L E. Neural Tissue Biomechanics. Berlin, Heidelberg: Springer, 2011: 69–120. DOI: 10.1007/8415_2010_62.
|
[31] |
WALSH D R, ZHOU Z, LI X G, et al. Mechanical properties of the cranial meninges: a systematic review [J]. Journal of Neurotrauma, 2021, 38(13): 1748–1761. DOI: 10.1089/neu.2020.7288.
|
[32] |
HO J, ZHOU Z, LI X G, et al. The peculiar properties of the falx and tentorium in brain injury biomechanics [J]. Journal of Biomechanics, 2017, 60: 243–247. DOI: 10.1016/j.jbiomech.2017.06.023.
|
[33] |
HERNANDEZ F, GIORDANO C, GOUBRAN M, et al. Lateral impacts correlate with falx cerebri displacement and corpus callosum trauma in sports-related concussions [J]. Biomechanics and modeling in mechanobiology, 2019, 18(3): 631–649. DOI: 10.1007/s10237-018-01106-0.
|
[34] |
COLGAN N C, GILCHRIST M D, CURRAN K M. Applying DTI white matter orientations to finite element head models to examine diffuse TBI under high rotational accelerations [J]. Progress in Biophysics and Molecular Biology, 2010, 103(2): 304–309. DOI: 10.1016/j.pbiomolbio.2010.09.008.
|
[35] |
GIORDANO C, CLOOTS R J H, VAN DOMMELEN J A W, et al. The influence of anisotropy on brain injury prediction [J]. Journal of Biomechanics, 2014, 47(5): 1052–1059. DOI: 10.1016/j.jbiomech.2013.12.036.
|
[36] |
BANDAK F A, VANDER VORST M J, STUHMILLER L M, et al. An imaging-based computational and experimental study of skull fracture: finite element model development [J]. Journal of Neurotrauma, 1995, 12(4): 679–688. DOI: 10.1089/neu.1995.12.679.
|
[37] |
CLOOTS R J H, VAN DOMMELEN J A W, KLEIVEN S, et al. Multi-scale mechanics of traumatic brain injury: predicting axonal strains from head loads [J]. Biomechanics and Modeling in Mechanobiology, 2013, 12(1): 137–150. DOI: 10.1007/s10237-012-0387-6.
|
[38] |
GIORDANO C, KLEIVEN S. Evaluation of Axonal Strain as a Predictor for Mild Traumatic Brain Injuries Using Finite Element Modeling [J]. Stapp Car Crash Journal, 2014, 58: 29–61. DOI: 10.4271/2014-22-0002.
|
[39] |
ZHOU Z, OLSSON C, GASSER T C, et al. The white matter fiber tract deforms most in the perpendicular direction during in vivo volunteer impacts [J]. Journal of Neurotrauma, 2024. DOI: 10.1089/neu.2024.0183.
|
[40] |
ZHOU Z, LI X G, LIU Y Z, et al. Toward a comprehensive delineation of white matter tract-related deformation [J]. Journal of Neurotrauma, 2021, 38(23): 3260–3278. DOI: 10.1089/neu.2021.0195.
|
[41] |
ZHOU Z, LI X G, KLEIVEN S. Fluid–structure interaction simulation of the brain–skull interface for acute subdural haematoma prediction [J]. Biomechanics and Modeling in Mechanobiology, 2019, 18(1): 155–173. DOI: 10.1007/s10237-018-1074-z.
|
[42] |
ZHOU Z, LI X G, KLEIVEN S. Biomechanics of acute subdural hematoma in the elderly: a fluid-structure interaction study [J]. Journal of Neurotrauma, 2019, 36(13): 2099–2108. DOI: 10.1089/neu.2018.6143.
|
[43] |
ZHOU Z, LI X G, KLEIVEN S. Evaluation of brain-skull interface modelling approaches on the prediction of acute subdural hematoma in the elderly [J]. Journal of Biomechanics, 2020, 105: 109787. DOI: 10.1016/j.jbiomech.2020.109787.
|
[44] |
ZHOU Z, LI X G, KLEIVEN S. Biomechanics of periventricular injury [J]. Journal of Neurotrauma, 2020, 37(8): 1074–1090. DOI: 10.1089/neu.2019.6634.
|
[45] |
ZHOU Z, LI X G, DOMEL A G, et al. The presence of the temporal horn exacerbates the vulnerability of hippocampus during head impacts [J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 754344. DOI: 10.3389/fbioe.2022.754344.
|
[46] |
HO J, KLEIVEN S. Can sulci protect the brain from traumatic injury? [J]. Journal of Biomechanics, 2009, 42(13): 2074–2080. DOI: 10.1016/j.jbiomech.2009.06.051.
|
[47] |
CLOOTS R J H, GERVAISE H M T, VAN DOMMELEN J A W, et al. Biomechanics of traumatic brain injury: influences of the morphologic heterogeneities of the cerebral cortex [J]. Annals of Biomedical Engineering, 2008, 36(7): 1203–1215. DOI: 10.1007/s10439-008-9510-3.
|
[48] |
LI X G, ZHOU Z, KLEIVEN S. An anatomically detailed and personalizable head injury model: significance of brain and white matter tract morphological variability on strain [J]. Biomechanics and Modeling in Mechanobiology, 2021, 20(2): 403–431. DOI: 10.1007/s10237-020-01391-8.
|
[49] |
LI X G. Subject-specific head model generation by mesh morphing: a personalization framework and its applications [J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 706566. DOI: 10.3389/fbioe.2021.706566.
|
[50] |
O’KEEFFE E, KELLY E, LIU Y Z, et al. Dynamic blood–brain barrier regulation in mild traumatic brain injury [J]. Journal of Neurotrauma, 2020, 37(2): 347–356. DOI: 10.1089/neu.2019.6483.
|
[51] |
CECCHI N J, DOMEL A G, LIU Y Z, et al. Identifying factors associated with head impact kinematics and brain strain in high school american football via instrumented mouthguards [J]. Annals of Biomedical Engineering, 2021, 49(10): 2814–2826. DOI: 10.1007/s10439-021-02853-5.
|
[52] |
ZHAN X H, LI Y H, LIU Y Z, et al. The relationship between brain injury criteria and brain strain across different types of head impacts can be different [J]. Journal of the Royal Society Interface, 2021, 18(179): 20210260. DOI: 10.1098/rsif.2021.0260.
|
[53] |
CECCHI N J, CALLAN A A, WATSON L P, et al. Padded helmet shell covers in American football: a comprehensive laboratory evaluation with preliminary on-field findings [J]. Annals of Biomedical Engineering, 2024, 52(10): 2703–2716. DOI: 10.1007/s10439-023-03169-2.
|
[54] |
FANTON M, SGANGA J, CAMARILLO D B. Vulnerable locations on the head to brain injury and implications for helmet design [J]. Journal of Biomechanical Engineering, 2019, 141(12): 121002. DOI: 10.1115/1.4044876.
|
[55] |
LAKSARI K, WU L C, KURT M, et al. Resonance of human brain under head acceleration [J]. Journal of The Royal Society Interface, 2015, 12(108): 20150331. DOI: 10.1098/rsif.2015.0331.
|
[56] |
RUAN J S, KHALIL T B, KING A I. Finite element modeling of direct head impact: SAE Technical Paper 933114 [R]. Warrendale: SAE, 1993. DOI: 10.4271/933114.
|
[57] |
ZHOU C, KHALIL T B, KING A I. A new model comparing impact responses of the homogeneous and inhomogeneous human brain: SAE Technical Paper 952714 [R]. Warrendale: SAE Transactions, 1995: 2999−3015. DOI: 10.4271/952714.
|
[58] |
ROSS D T, MEANEY D F, SABOL M K, et al. Distribution of forebrain diffuse axonal injury following inertial closed head injury in miniature swine [J]. Experimental Neurology, 1994, 126(2): 291–298. DOI: 10.1006/exnr.1994.1067.
|
[59] |
AL-BSHARAT A S, HARDY W N, YANG K H, et al. Brain/skull relative displacement magnitude due to blunt head impact: new experimental data and model: SAE Technical Paper 99SC22 [R]. Warrendale: SAE International, 1999. DOI: 10.4271/99SC22.
|
[60] |
GURDJIAN E S, LISSNER H R. The position and motions of the head at impact: SAE Technical Paper 640847 [R]. Warrendale: SAE International, 1964. DOI: 10.4271/640847.
|
[61] |
ZHANG L Y, YANG K H, DWARAMPUDI R, et al. Recent advances in brain injury research: a new human head model development and validation [J]. Stapp Car Crash Journal, 2001, 45: 369–394. DOI: 10.4271/2001-22-0017.
|
[62] |
TROSSEILLE X, TARRIÉRE C, LAVASTE F, et al. Development of a F. E. M. of the human head according to a specific test protocol: SAE Technical Paper 922527 [R]. Warrendale: SAE International, 1992. DOI: 10.4271/922527.
|
[63] |
FREDRIKSSON R, ZHANG L Y, BOSTRÖM O, et al. Influence of impact speed on head and brain injury outcome in vulnerable road user impacts to the car hood: SAE Technical Paper 2007-22-0007 [R]. Warrendale: SAE International, 2007. DOI: 10.4271/2007-22-0007.
|
[64] |
VIANO D C, CASSON I R, PELLMAN E J, et al. Concussion in professional football: brain responses by finite element analysis: part 9 [J]. Neurosurgery, 2005, 57(5): 891–916. DOI: 10.1227/01.NEU.0000186950.54075.3B.
|
[65] |
MAO H J, GAO H T, CAO L B, et al. Development of high-quality hexahedral human brain meshes using feature-based multi-block approach [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16(3): 271–279. DOI: 10.1080/10255842.2011.617005.
|
[66] |
ZHOU S Z, ZHANG X, MA H L. Numerical simulation of human head impact using the material point method [J]. International Journal of Computational Methods, 2013, 10(4): 1350014. DOI: 10.1142/S021987621350014X.
|
[67] |
MAO H J, ZHANG L Y, JIANG B H, et al. Development of a finite element human head model partially validated with thirty five experimental cases [J]. Journal of Biomechanical Engineering, 2013, 135(11): 111002. DOI: 10.1115/1.4025101.
|
[68] |
BIAN K W, MAO H J. Mechanisms and variances of rotation-induced brain injury: a parametric investigation between head kinematics and brain strain [J]. Biomechanics and Modeling in Mechanobiology, 2020, 19(6): 2323–2341. DOI: 10.1007/s10237-020-01341-4.
|
[69] |
WU T T, ALSHAREEF A, GIUDICE J S, et al. Explicit modeling of white matter axonal fiber tracts in a finite element brain model [J]. Annals of Biomedical Engineering, 2019, 47(9): 1908–1922. DOI: 10.1007/s10439-019-02239-8.
|
[70] |
ALSHAREEF A, GIUDICE J S, FORMAN J, et al. A novel method for quantifying human in situ whole brain deformation under rotational loading using sonomicrometry [J]. Journal of Neurotrauma, 2018, 35(5): 780–789. DOI: 10.1089/neu.2017.5362.
|
[71] |
HAJIAGHAMEMAR M, WU T T, PANZER M B, et al. Embedded axonal fiber tracts improve finite element model predictions of traumatic brain injury [J]. Biomechanics and Modeling in Mechanobiology, 2020, 19(3): 1109–1130. DOI: 10.1007/s10237-019-01273-8.
|
[72] |
LYU D, ZHOU R Z, LIN C H, et al. Development and validation of a new anisotropic visco-hyperelastic human head finite element model capable of predicting multiple brain injuries [J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 831595. DOI: 10.3389/fbioe.2022.831595.
|
[73] |
Toyota Motor Corporation. Total human model for safety (THUMS) : revolutionizing crash simulation to support safe mobility for all [EB/OL]. (2021-01-28) [2024-12-09]. https://www.toyota.co.jp/thums/contents/pdf/Toyota_THUMS_History_English.pdf.
|
[74] |
IWAMOTO M, KISANUKI Y, WATANABE I, et al. Development of a finite element model of the total human model for safety (THUMS) and application to injury reconstruction[C]//Proceedings of the 2002 International IRCOBIConference, Munich, Germany, 2002: 31–42.
|
[75] |
CAVANAUGH J M, NYQUIST G W, GOLDBERG S J, et al. Lower abdominal tolerance and response: SAE Technical Paper 861878 [R]. Warrendale: SAE International, 1986. DOI: 10.4271/861878.
|
[76] |
IWAMOTO M, NAKAHIRA Y, TAMURA A, et al. Development of a finite element model of the total human model for safety (THUMS) and application to injury reconstruction[C]//Proc. 6th European LS-DYNA Users’ Conference. 2007: 47–56.
|
[77] |
KIMPARA H, NAKAHIRA Y, IWAMOTO M, et al. Investigation of anteroposterior head-neck responses during severe frontal impacts using a brain-spinal cord complex FE model [J]. Stapp car crash journal, 2006, 50: 509–544. DOI: 10.4271/2006-22-0019.
|
[78] |
TAMURA A, NAKAHIRA Y, IWAMOTO M, et al. The influence of the traction force due to inertia of the brain mass on traumatic brain injury during SUV-to-pedestrian impact [C]//Proceedings of the 2006 International Ircobi Conference on the Biomechanics of Impact. 2006: 100.
|
[79] |
IWAMOTO M, NAKAHIRA Y, KIMPARA H. Development and validation of the total human model for safety (THUMS) toward further understanding of occupant injury mechanisms in precrash and during crash [J]. Traffic Injury Prevention, 2015, 16(S1): S36–S48. DOI: 10.1080/15389588.2015.1015000.
|
[80] |
IWAMOTO M, KISANUKI Y, WATANABE I, et al. Development of a finite element model of the total human model for safety (THUMS) and application to injury reconstruction[C]//Proceedings of the international IRCOBI Conference. 2002: 18–20.
|
[81] |
ATSUMI N, NAKAHIRA Y, IWAMOTO M. Development and validation of a head/brain FE model and investigation of influential factor on the brain response during head impact [J]. International Journal of Vehicle Safety, 2016, 9(1): 1–23. DOI: 10.1504/IJVS.2016.077145.
|
[82] |
TAKHOUNTS E G, RIDELLA S A, HASIJA V, et al. Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model [J]. Stapp Car Crash Journal, 2008, 52: 1–31. DOI: 10.4271/2008-22-0001.
|
[83] |
ATSUMI N, NAKAHIRA Y, TANAKA E, et al. Human brain modeling with its anatomical structure and realistic material properties for brain injury prediction [J]. Annals of Biomedical Engineering, 2018, 46(5): 736–748. DOI: 10.1007/s10439-018-1988-8.
|
[84] |
ATSUMI N, NAKAHIRA Y, IWAMOTO M. Human brain FE modeling including incompressible fluid dynamics of intraventricular cerebrospinal fluid [J]. Brain Multiphysics, 2021, 2: 100037. DOI: 10.1016/j.brain.2021.100037.
|
[85] |
KIMPARA H, NAKAHIRA Y, IWAMOTO M. Development and validation of THUMS version 5 with 1D muscle models for active and passive automotive safety research [C]//Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Orlando: IEEE, 2016: 6022–6025. DOI: 10.1109/EMBC.2016.7592101.
|
[86] |
AFEWERKI H. Biofidelity evaluation of thoracolumbar spine model in THUMS [D]. Gothenburg: Chalmers University of Technology, 2016.
|
[87] |
TAKAO M, NAOYA K, NORIYUKI F, et al. Development of a human body model (THUMS Version 7) to simulate kinematics and injuries of reclined occupants in frontal collisions [C]//Proceedings of the 27th Enhanced Safety of Vehicles Conference. Yokohama: NHTSA, 2023.
|
[88] |
GHAJARI M, HELLYER P, SHARP D. Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology[J]. Brain : a journal of neurology, 2017, 140. DOI: 10.1093/brain/aww317.
|
[89] |
MEZ J, DANESHVAR D H, KIERNAN P T, et al. Clinicopathological evaluation of chronic traumatic encephalopathy in players of American football [J]. JAMA, 2017, 318(4): 360–370. DOI: 10.1001/jama.2017.8334.
|
[90] |
ZIMMERMAN K A, KIM J, KARTON C, et al. Player position in American football influences the magnitude of mechanical strains produced in the location of chronic traumatic encephalopathy pathology: A computational modelling study [J]. Journal of Biomechanics, 2021, 118: 110256. DOI: 10.1016/j.jbiomech.2021.110256.
|
[91] |
YU X C, GHAJARI M. Protective performance of helmets and goggles in mitigating brain biomechanical response to primary blast exposure [J]. Annals of Biomedical Engineering, 2022, 50(11): 1579–1595. DOI: 10.1007/s10439-022-02936-x.
|
[92] |
ABAYAZID F, DING K, ZIMMERMAN K, et al. A new assessment of bicycle helmets: the brain injury mitigation effects of new technologies in oblique impacts [J]. Annals of Biomedical Engineering, 2021, 49(10): 2716–2733. DOI: 10.1007/s10439-021-02785-0.
|
[93] |
KHOSROSHAHI S F, DUCKWORTH H, GALVANETTO U, et al. The effects of topology and relative density of lattice liners on traumatic brain injury mitigation [J]. Journal of Biomechanics, 2019, 97: 109376. DOI: 10.1016/j.jbiomech.2019.109376.
|
[94] |
DUCKWORTH H, AZOR A, WISCHMANN N, et al. A finite element model of cerebral vascular injury for predicting microbleeds location [J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 860112. DOI: 10.3389/fbioe.2022.860112.
|
[95] |
DUCKWORTH H, SHARP D J, GHAJARI M. Smoothed particle hydrodynamic modelling of the cerebrospinal fluid for brain biomechanics: Accuracy and stability [J]. International Journal for Numerical Methods in Biomedical Engineering, 2021, 37(4): e3440. DOI: 10.1002/cnm.3440.
|
[96] |
MCALLISTER T W, FORD J C, JI S B, et al. Maximum principal strain and strain rate associated with concussion diagnosis correlates with changes in corpus callosum white matter indices [J]. Annals of Biomedical Engineering, 2012, 40(1): 127–140. DOI: 10.1007/s10439-011-0402-6.
|
[97] |
JI S B, ZHAO W, LI Z G, et al. Head impact accelerations for brain strain-related responses in contact sports: a model-based investigation [J]. Biomechanics and Modeling in Mechanobiology, 2014, 13(5): 1121–1136. DOI: 10.1007/s10237-014-0562-z.
|
[98] |
JI S B, ZHAO W, FORD J C, et al. Group-wise evaluation and comparison of white matter fiber strain and maximum principal strain in sports-related concussion [J]. Journal of Neurotrauma, 2015, 32(7): 441–454. DOI: 10.1089/neu.2013.3268.
|
[99] |
KLEIVEN S. Predictors for traumatic brain injuries evaluated through accident reconstructions: SAE Technical Paper 2007-22-0003 [R]. Warrendale: SAE International, 2007. DOI: 10.4271/2007-22-0003.
|
[100] |
ZHAO W, JI S B. White matter anisotropy for impact simulation and response sampling in traumatic brain injury [J]. Journal of Neurotrauma, 2019, 36(2): 250–263. DOI: 10.1089/neu.2018.5634.
|
[101] |
ZHAO W, JI S B. Incorporation of vasculature in a head injury model lowers local mechanical strains in dynamic impact [J]. Journal of Biomechanics, 2020, 104: 109732. DOI: 10.1016/j.jbiomech.2020.109732.
|
[102] |
ZHANG L Y, BAE J, HARDY W N, et al. Computational study of the contribution of the vasculature on the dynamic response of the brain: SAE Technical Paper 2002-22-0008 [R]. Warrendale: SAE International, 2002. DOI: 10.4271/2002-22-0008.
|
[103] |
ZHAO W, JI S B. Cerebral vascular strains in dynamic head impact using an upgraded model with brain material property heterogeneity [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126: 104967. DOI: 10.1016/j.jmbbm.2021.104967.
|
[104] |
WILLINGER R, TALEB L, PRADOURA P. Head biomechanics: from the finite element model to the physical model [C]//Proceedings of the International Research Council on the Biokinetics of Impacts. Avenue Salvador Allende, 1995: 245–259.
|
[105] |
WILLINGER R, TALEB L, KOPP C M. Modal and temporal analysis of head mathematical models [J]. Journal of Neurotrauma, 1995, 12(4): 743–754. DOI: 10.1089/neu.1995.12.743.
|
[106] |
KANG H S, WILLINGER R, DIAW B M, et al. Validation of a 3D anatomic human head model and replication of head impact in motorcycle accident by finite element modeling: SAE Technical Paper 973339 [R]. SAE Transactions, 1997: 3849–3858.
|
[107] |
DECK C, NICOLLE S, WILLINGER R. Human head FE modelling: improvement of skull geometry and brain constitutive laws [C]//Proceedings of the IRCOBI Conference. 2004.
|
[108] |
RAUL J S, BAUMGARTNER D, WILLINGER R, et al. Finite element modelling of human head injuries caused by a fall [J]. International Journal of Legal Medicine, 2006, 120(4): 212–218. DOI: 10.1007/s00414-005-0018-1.
|
[109] |
PINNOJI P K, MAHAJAN P. Finite element modelling of helmeted head impact under frontal loading [J]. Sadhana, 2007, 32(4): 445–458. DOI: 10.1007/s12046-007-0034-6.
|
[110] |
RAUL J S, DECK C, WILLINGER R, et al. Finite-element models of the human head and their applications in forensic practice [J]. International Journal of Legal Medicine, 2008, 122(5): 359–366. DOI: 10.1007/s00414-008-0248-0.
|
[111] |
MEYER F, BOURDET N, GUNZEL K, et al. Development and validation of a coupled head-neck FEM – application to whiplash injury criteria investigation [J]. International Journal of Crashworthiness, 2013, 18(1): 40–63. DOI: 10.1080/13588265.2012.732293.
|
[112] |
MARJOUX D, BAUMGARTNER D, DECK C, et al. Head injury prediction capability of the HIC, HIP, SIMon and ULP criteria [J]. Accident Analysis & Prevention, 2008, 40(3): 1135–1148. DOI: 10.1016/j.aap.2007.12.006.
|
[113] |
YANG B, TSE K M, CHEN N, et al. Development of a finite element head model for the study of impact head injury [J]. BioMed Research International, 2014, 2014: 408278. DOI: 10.1155/2014/408278.
|
[114] |
TSE K M, TAN L B, LEE S J, et al. Investigation of the relationship between facial injuries and traumatic brain injuries using a realistic subject-specific finite element head model [J]. Accident Analysis & Prevention, 2015, 79: 13–32. DOI: 10.1016/j.aap.2015.03.012.
|
[115] |
SANDBERG M, TSE K M, TAN L B, et al. A computational study of the EN 1078 impact test for bicycle helmets using a realistic subject-specific finite element head model [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2018, 21(12): 684–692. DOI: 10.1080/10255842.2018.1511775.
|
[116] |
HORGAN T J, GILCHRIST M D. The creation of three-dimensional finite element models for simulating head impact biomechanics [J]. International Journal of Crashworthiness, 2003, 8(4): 353–366. DOI: 10.1533/ijcr.2003.0243.
|
[117] |
HORGAN T J, GILCHRIST M D. Influence of FE model variability in predicting brain motion and intracranial pressure changes in head impact simulations [J]. International Journal of Crashworthiness, 2004, 9(4): 401–418. DOI: 10.1533/ijcr.2004.0299.
|
[118] |
DOORLY M C, GILCHRIST M D. The use of accident reconstruction for the analysis of traumatic brain injury due to head impacts arising from falls [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2006, 9(6): 371–377. DOI: 10.1080/10255840601003551.
|
[119] |
YAN W, PANGESTU O D. A modified human head model for the study of impact head injury [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14(12): 1049–1057. DOI: 10.1080/10255842.2010.506435.
|
[120] |
TROTTA A, CLARK J M, MCGOLDRICK A, et al. Biofidelic finite element modelling of brain trauma: Importance of the scalp in simulating head impact [J]. International Journal of Mechanical Sciences, 2020, 173: 105448. DOI: 10.1016/j.ijmecsci.2020.105448.
|
[121] |
LOYD A M, NIGHTINGALE R W, SONG Y, et al. The response of the adult and ATD heads to impacts onto a rigid surface [J]. Accident Analysis & Prevention, 2014, 72: 219–229. DOI: 10.1016/j.aap.2014.06.022.
|
[122] |
HARDY W N, MASON M J, FOSTER C D, et al. A study of the response of the human cadaver head to impact [J]. Stapp Car Crash Journal, 2007, 51: 17–80. DOI: 10.4271/2007-22-0002.
|
[123] |
JI S B, GHAJARI M, MAO H J, et al. Use of brain biomechanical models for monitoring impact exposure in contact sports [J]. Annals of Biomedical Engineering, 2022, 50(11): 1389–1408. DOI: 10.1007/s10439-022-02999-w.
|
[124] |
POST A, HOSHIZAKI T B, GILCHRIST M D, et al. Traumatic brain injuries: the influence of the direction of impact [J]. Neurosurgery, 2015, 76(1): 81–91. DOI: 10.1227/NEU.0000000000000554.
|
[125] |
WITTEK A, LAPORTE J, MILLER K, et al. Computing reaction forces on surgical tools for robotic neurosurgery and surgical simulation [C]//Proceedings of 2004 Australasian Conference on Robotics & Automatism. Canberra, Australia, 2004: 1–8.
|
[126] |
MILLER K, CHINZEI K, ORSSENGO G, et al. Mechanical properties of brain tissue in-vivo: experiment and computer simulation [J]. Journal of Biomechanics, 2000, 33(11): 1369–1376. DOI: 10.1016/S0021-9290(00)00120-2.
|
[127] |
WITTEK A, KIKINIS R, WARFIELD S K, et al. Brain shift computation using a fully nonlinear biomechanical model [C]//Proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention. Palm Springs: Springer, 2005: 583–590. DOI: 10.1007/11566489_72.
|
[128] |
SUN K, PHEIFFER T, SIMPSON A, et al. Near Real-Time Computer Assisted Surgery for Brain Shift Correction Using Biomechanical Models [J]. Translational Engineering in Health and Medicine, IEEE Journal of, 2014, 2: 1–13. DOI: 10.1109/JTEHM.2014.2327628.
|
[129] |
芦俊鹏, 张建国, RUAN J, 等. 人体颅脑三维有限元模型构建 [J]. 微计算机信息, 2006, 22(22): 211–212,17. DOI: 10.3969/j.issn.1008-0570.2006.22.079.
LU J P, ZHANG J G, RUAN J, et al. A development of 3-D FEM for cranium brain based on CT [J]. Microcomputer Information, 2006, 22(22): 211–212,17. DOI: 10.3969/j.issn.1008-0570.2006.22.079.
|
[130] |
李海岩, 苏航杰, 祝贺, 等. 中国体征3岁儿童乘员损伤仿生模型在C-NCAP正面碰撞测试仿真中的应用 [J]. 汽车工程, 2022, 44(12): 1944–1953. DOI: 10.19562/j.chinasae.qcgc.2022.12.016.
LI H Y, SU H J, ZHU H, et al. Application of a bionic model of occupant injury for 3-year-old children with chinese physical characteristics in C-NCAP frontal crash test simulation [J]. Automotive Engineering, 2022, 44(12): 1944–1953. DOI: 10.19562/j.chinasae.qcgc.2022.12.016.
|
[131] |
LI H Y, LI K, HUANG Y Q, et al. Validation of a finite element model with six-year-old child anatomical characteristics as specified in Euro NCAP Pedestrian Human Model Certification (TB024) [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2021, 24(1): 76–90. DOI: 10.1080/10255842.2020.1810677.
|
[132] |
梁亚妮. 国人第五百分位女性行人下肢有限元模型开发及碰撞损伤研究[D]. 天津: 天津科技大学, 2024. DOI: 10.27359/d.cnki.gtqgu.2022.000080.
LIANG Y N. Development of a finite element model of the lower limb of a female pedestrian in the 5th percentile of the national population and crash injury study [D]. Tianjin: Tianjin University of Science and Technology, 2024. DOI: 10.27359/d.cnki.gtqgu.2022.000080.
|
[133] |
胡静. 国人第五百分位女性乘员损伤仿生模型开发及应用研究[D]. 天津: 天津科技大学, 2023. DOI: 10.27359/d.cnki.gtqgu.2023.000985.
HU J. A study on the development and application of a bionic model of fifth percentile female occupant injury in the national population[D]. Tianjin: Tianjin University of Science and Technology, 2023. DOI: 10.27359/d.cnki.gtqgu.2023.000985.
|
[134] |
包永涛, 李海岩, 赵玮, 等. 第95百分位人体头部有限元模型的构建及分析 [J]. 天津科技大学学报, 2010, 25(4): 48–51. DOI: 10.13364/j.issn.1672-6510.2010.04.015.
BAO Y T, LI H Y, ZHAO W, et al. Development and analysis of the 95th percentile human head finite element model [J]. Journal of Tianjin University of Science and Technology, 2010, 25(4): 48–51. DOI: 10.13364/j.issn.1672-6510.2010.04.015.
|
[135] |
李海岩, 曹祎帆, 贺丽娟, 等. 个性化头部生物力学模型的开发及验证 [J]. 中国医学物理学杂志, 2024, 41(7): 883–889. DOI: 10.3969/j.issn.1005-202X.2024.07.015.
LI H Y, CAO Y F, HE L J, et al. Personalized biomechanical modeling of the human head and validation [J]. Chinese Journal of Medical Physics, 2024, 41(7): 883–889. DOI: 10.3969/j.issn.1005-202X.2024.07.015.
|
[136] |
YANG J K, LÖVSUND P, CAVALLERO C, et al. A human-body 3D mathematical model for simulation of car-pedestrian impacts [J]. Journal of Crash Prevention and Injury Control, 2000, 2(2): 131–149. DOI: 10.1080/10286580008902559.
|
[137] |
任立海, 王丙雨, 杨济匡. 基于汽车-行人碰撞事故中行人颅脑损伤风险的道路限速研究 [C]//Infats Proceedings of the 12th International Forum of Automotive Traffic Safety. 厦门: 湖南大学汽车车身先进设计制造国家重点实验室, 2015: 8.
|
[138] |
李凡, 杨济匡. 基于车辆-行人碰撞颅脑伤防护的参数研究 [J]. 中国机械工程, 2007, 18(9): 1125–1130. DOI: 10.3321/j.issn:1004-132X.2007.09.030.
LI F, YANG J K. Parameter study on head protection in vehicle-pedestrian collision [J]. China Mechanical Engineering, 2007, 18(9): 1125–1130. DOI: 10.3321/j.issn:1004-132X.2007.09.030.
|
[139] |
YANG J K. Investigation of brain trauma biomechanics in vehicle traffic accidents using human body computational models [M]//WITTEK A, NIELSEN P M F, MILLER K. Computational Biomechanics for Medicine. New York: Springer, 2011: 5–14. DOI: 10.1007/978-1-4419-9619-0_2.
|
[140] |
PENG Y, HAN Y, CHEN Y, et al. Assessment of the protective performance of hood using head FE model in car-to-pedestrian collisions [J]. International Journal of Crashworthiness, 2012, 17(4): 415–423. DOI: 10.1080/13588265.2012.661659.
|
[141] |
柳占立, 杜智博, 张家瑞, 等. 颅脑爆炸伤致伤机制及防护研究进展 [J]. 爆炸与冲击, 2022, 42(4): 041101. DOI: 10.11883/bzycj-2021-0053.
LIU Z L, DU Z B, ZHANG J R, et al. Progress in the mechanism and protection of blast-induced traumatic brain injury [J]. Explosion and Shock Waves, 2022, 42(4): 041101. DOI: 10.11883/bzycj-2021-0053.
|
[142] |
LI Z J, DU Z B, YOU X C, et al. Numerical study on dynamic mechanism of brain volume and shear deformation under blast loading [J]. Acta Mechanica Sinica, 2019, 35(5): 1104–1119. DOI: 10.1007/s10409-019-00875-w.
|
[143] |
栗志杰, 由小川, 柳占立, 等. 爆炸冲击波作用下颅脑损伤机理的数值模拟研究 [J]. 爆炸与冲击, 2020, 40(1): 015901. DOI: 10.11883/bzycj-2018-0348.
LI Z J, YOU X C, LIU Z L, et al. Numerical simulation of the mechanism of traumatic brain injury induced by blast shock waves [J]. Explosion and Shock Waves, 2020, 40(1): 015901. DOI: 10.11883/bzycj-2018-0348.
|
[144] |
DU Z B, LI Z J, WANG P, et al. Revealing the effect of skull deformation on intracranial pressure variation during the direct interaction between blast wave and surrogate head [J]. Annals of Biomedical Engineering, 2022, 50(9): 1038–1052. DOI: 10.1007/s10439-022-02982-5.
|
[145] |
DU Z B, LI Z J, WANG P, et al. Revealing the nonlinear mechanical behavior of white matter brain tissue by analyzing the asynchronous deformation and damage of matrix and axonal fibers [J]. International Journal of Solids and Structures, 2022, 242: 111554. DOI: 10.1016/j.ijsolstr.2022.111554.
|
[146] |
DU Z B, WANG P, LUO P, et al. Mechanical mechanism and indicator of diffuse axonal injury under blast-type acceleration [J]. Journal of Biomechanics, 2023, 156: 111674. DOI: 10.1016/j.jbiomech.2023.111674.
|
[147] |
DU Z B, ZHANG J R, WANG X H, et al. Unveiling human vulnerability and a new interspecies scaling law for brain injury under blast loading [J]. Extreme Mechanics Letters, 2024, 70: 102179. DOI: 10.1016/j.eml.2024.102179.
|
[148] |
王荡荡. 头部有限元模型脑神经耦合建模及应用 [D]. 重庆: 重庆理工大学, 2021: 13–20.
WANG D D. Modeling and application of axonal fiber in finite element head model [D]. Chongqing: Chongqing University of Technology, 2021: 13–20.
|
[149] |
REN L H, WANG D D, JIANG C Y, et al. Influence of foramen magnum boundary condition on intracranial dynamic response under forehead impact using human body finite element model [J]. International Journal of Computational Methods, 2020, 17(7): 1950029. DOI: 10.1142/S0219876219500294.
|
[150] |
ZHAN X H, LIU Y Z, RAYMOND S J, et al. Rapid estimation of entire brain strain using deep learning models [J]. IEEE Transactions on Biomedical Engineering, 2021, 68(11): 3424–3434. DOI: 10.1109/TBME.2021.3073380.
|
[151] |
LIU Y Z, DOMEL A G, YOUSEFSANI S A, et al. Validation and comparison of instrumented mouthguards for measuring head kinematics and assessing brain deformation in football impacts [J]. Annals of Biomedical Engineering, 2020, 48(11): 2580–2598. DOI: 10.1007/s10439-020-02629-3.
|
[152] |
LIU Y Z, DOMEL A G, CECCHI N J, et al. Time window of head impact kinematics measurement for calculation of brain strain and strain rate in American football [J]. Annals of Biomedical Engineering, 2021, 49(10): 2791–2804. DOI: 10.1007/s10439-021-02821-z.
|
[153] |
ZHAN X H, LI Y H, LIU Y Z, et al. Predictive factors of kinematics in traumatic brain injury from head impacts based on statistical interpretation [J]. Annals of Biomedical Engineering, 2021, 49(10): 2901–2913. DOI: 10.1007/s10439-021-02813-z.
|
[154] |
ZHAN X H, LIU Y Z, CECCHI N J, et al. Finding the spatial co-variation of brain deformation with principal component analysis [J]. IEEE Transactions on Biomedical Engineering, 2022, 69(10): 3205–3215. DOI: 10.1109/TBME.2022.3163230.
|
[155] |
ZHAN X H, LI Y H, LIU Y Z, et al. Machine-learning-based head impact subtyping based on the spectral densities of the measurable head kinematics [J]. Journal of Sport and Health Science, 2023, 12(5): 619–629. DOI: 10.1016/j.jshs.2023.03.003.
|
[156] |
ZHAN X H, LI Y H, LIU Y Z, et al. Piecewise multivariate linearity between kinematic features and cumulative strain damage measure (CSDM) across different types of head impacts [J]. Annals of Biomedical Engineering, 2022, 50(11): 1596–1607. DOI: 10.1007/s10439-022-03020-0.
|
[157] |
ZHAN X H, LIU Y Z, CECCHI N J, et al. Brain deformation estimation with transfer learning for head impact datasets across impact types [J]. IEEE Transactions on biomedical Engineering, 2024, 71(6): 1853–1863. DOI: 10.1109/TBME.2024.3354192.
|
[158] |
ZHAN X H, SUN J W, LIU Y Z, et al. Adaptive machine learning head model across different head impact types using unsupervised domain adaptation and generative adversarial networks [J]. IEEE Sensors Journal, 2024, 24(5): 7097–7106. DOI: 10.1109/JSEN.2023.3349213.
|
[159] |
ZHAN X H, LIU Y Z, CECCHI N J, et al. AI-based denoising of head impact kinematics measurements with convolutional neural network for traumatic brain injury prediction [J]. IEEE Transactions on Biomedical Engineering, 2024, 71(9): 2759–2770. DOI: 10.1109/TBME.2024.3392537.
|
[160] |
CAI Y L, WU S J, ZHAO W, et al. Concussion classification via deep learning using whole-brain white matter fiber strains [J]. PLoS One, 2018, 13(5): e0197992. DOI: 10.1371/journal.pone.0197992.
|
[161] |
GHAZI K, WU S J, ZHAO W, et al. Instantaneous whole-brain strain estimation in dynamic head impact [J]. Journal of Neurotrauma, 2021, 38(8): 1023–1035. DOI: 10.1089/neu.2020.7281.
|
[162] |
WU S J, ZHAO W, GHAZI K, et al. Convolutional neural network for efficient estimation of regional brain strains [J]. Scientific Reports, 2019, 9(1): 17326. DOI: 10.1038/s41598-019-53551-1.
|
[163] |
WU S J, ZHAO W, JI S B. Real-time dynamic simulation for highly accurate spatiotemporal brain deformation from impact [J]. Computer Methods in Applied Mechanics and Engineering, 2022, 394: 114913. DOI: 10.1016/j.cma.2022.114913.
|
[164] |
FAHLSTEDT M, ABAYAZID F, PANZER M B, et al. Ranking and rating bicycle helmet safety performance in oblique impacts using eight different brain injury models [J]. Annals of Biomedical Engineering, 2021, 49(3): 1097–1109. DOI: 10.1007/s10439-020-02703-w.
|
[165] |
GIUDICE J S, ZENG W, WU T T, et al. An analytical review of the numerical methods used for finite element modeling of traumatic brain injury [J]. Annals of Biomedical Engineering, 2019, 47(9): 1855–1872. DOI: 10.1007/s10439-018-02161-5.
|
[166] |
BOURDET N, DECK C, TROG A, et al. Deep learning methods applied to the assessment of Brain Injury Risk [C]// Proceedings of the IRCOBI Conference. 2021.
|
[167] |
UPADHYAY K, JAGANI R, GIOVANIS D G, et al. Effect of human head shape on the risk of traumatic brain injury: a gaussian process regression-based machine learning approach [J]. Military Medicine, 2024, 189(S3): 608–617. DOI: 10.1093/milmed/usae199.
|
[168] |
ZHANG L Y, YANG K H, KING A I. A proposed injury threshold for mild traumatic brain injury [J]. Journal of Biomechanical Engineering, 2004, 126(2): 226–236. DOI: 10.1115/1.1691446.
|
[169] |
BASS C R, PANZER M B, RAFAELS K A, et al. Brain injuries from blast [J]. Annals of Biomedical Engineering, 2012, 40(1): 185–202. DOI: 10.1007/s10439-011-0424-0.
|