• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
QI Chengzhi, WU Siyu, BAN Liren, LI Xiaozhao, Kocharyan Gevorg Grantovich. A study on the viscous characteristics of fault granular gouge under low and high slip rates[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0395
Citation: QI Chengzhi, WU Siyu, BAN Liren, LI Xiaozhao, Kocharyan Gevorg Grantovich. A study on the viscous characteristics of fault granular gouge under low and high slip rates[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0395

A study on the viscous characteristics of fault granular gouge under low and high slip rates

doi: 10.11883/bzycj-2024-0395
  • Received Date: 2024-10-18
  • Rev Recd Date: 2025-01-08
  • Available Online: 2025-01-08
  • The viscous characteristics of fault granular interlayers have a significant impact on the dynamic mechanical behavior of faults. The problem of determining the viscosity of fault granular interlayers at different slip velocities has not yet been solved. This article conducts theoretical research on this issue. Firstly, the Maxwell relaxation model was used to study the evolution of force chains for slow shearing of granular gouge, and the dependence of force chain length on shear strain rate, effective extension speed of shear bands, and strength of granular medium was derived. Further the relaxation time of the shear band, the expression of the viscosity coefficient of the granular medium, the conditions for the transformation of solid-liquid mechanical behavior of the granular medium were established. The comparison with existing experimental data has verified the validity of this model. For high-speed slip shear, the motion of granular medium exhibits turbulent characteristics. Statistical physics was used to describe the interaction between granular particles, and it is obtained that the viscosity coefficient is inversely proportional to the shear rate at high slip rate. The research results have fundamental significance for understanding the viscous and other physico-mechanical properties of granular gouge in faults.
  • loading
  • [1]
    SADOVSKY M A, BOLKHOVITINOV L G, PISARENKO V F. Deformation of geophysical medium and seismic process[M]. Nauka, Moscow, 1987.
    [2]
    BRACE W F, BYERLEE J D. Stick-slip as a mechanism for earthquake [J]. Science, 1966, 153(3739): 990–992. DOI: 10.1126/science.153.3739.990.
    [3]
    KOSTROV BV. Mechanics of sources of tectonic earthquakes[M]. Nauka, Moscow, 1975.
    [4]
    KANAMORI H, STEWART G S. Mode of strain release along Gibbs fracture zone, Mid-Atlantic ridge [J]. Physics of the Earth and Planetary Interiors, 1976, 11(4): 312–332. DOI: 10.1016/0031-9201(76)90018-2.
    [5]
    AKI K, BOUCHON M, CHOUET B, et al. Quantitative prediction of strong motion for a potential earthquake fault [J]. Annals of Geophysics, 2010, 53(1): 81–91. DOI: 10.4401/ag-4665.
    [6]
    MYACHKIN V I. Preparation processes of earthquakes[M]. Nauka, Moscow, 1978.
    [7]
    DIETRICH J H. Modeling of rock friction: 1. experimental results and constitutive equations [J]. Journal of Geophysical Research., 1979, 84(B5): 2161–2168. DOI: 10.1029/JB084iB05p02161.
    [8]
    RICE J R, RUINA A L. Stability of steady frictional slipping [J]. Journal of Applied Mechanics, 1983, 50(2): 343–349. DOI: 10.1115/1.3167042.
    [9]
    SCHOLZ C H. The Mechanics of Earthquakes and Faulting[M]. Cambridge University Press, 1990.
    [10]
    DOBROVOLSKY I P. Theory of preparation of tectonic earthquakes[M]. Nauka, Moscow, 1991.
    [11]
    DOBROVOLSKY I P. The mathematical theory of earthquake preparation and prediction[M]. Fizmatlit, Moscow, 2009.
    [12]
    SOBOLEV G A, PONOMOREV A V. The Physics of Earthquakes and Precursors[M]. Nauka, Moscow, 2003.
    [13]
    KOCHARYAN G G. Geomechanics of faults[M]. Geos, Moscow, 2016.
    [14]
    SCHOLZ C H, CAMPOS J. The seismic coupling of subduction zones revisited [J]. Journal of Geophysical Research, 2012, 117(B5): 1–22. DOI: 10.1029/2011JB009003.
    [15]
    CARPENTER B M, IKARI M J, MARONE C. Laboratory observations of time-dependent frictional strengthening and stress relaxation in natural and synthetic fault gouges [J]. Journal of Geophysical Research: Solid Earth, 2016, 121(2): 1183–1201. DOI: 10.1002/2015JB012136.
    [16]
    IKARI M J, MARONE C, SAFFER D M. On the relation between fault strength and frictional stability [J]. Geology, 2011, 39(1): 83–86. DOI: 10.1130/G31416.1.
    [17]
    BOATWRIGHT J, COCCO M. Frictional constraints on crustal faulting [J]. Journal of Geophysical Research, 1996, 101(B6): 13895–13909. DOI: 10.1029/96jb00405.
    [18]
    PERSSON B N J. Sliding Friction: Physical Principles and Applications[M]. Nano Science and Technology. Springer-Verlag, Berlin and Heidelberg, 1998.
    [19]
    MUSER MH, URBAKH M, ROBBINS MO. Statistical mechanics of static and low-velocity kinetic friction [J]. Advances in Chemical Physics., 2003, 126: 187–272.
    [20]
    BAUBERGER T, CAROLI C. Solid friction from stick-slip down to pinning and aging [J]. Advances in Physics., 2006, 55(3-4): 279–348. DOI: 10.1080/00018730600732186.
    [21]
    ZHENG G, RICE J R. Conditions under which velocity-weakening friction allows a self-healing versus a cracklike mode of rupture [J]. Bulletin of the Seismological Society of America, 1998, 88(6): 1466–1483. DOI: 10.1016/S0040-1951(98)00192-9.
    [22]
    RICE J R, LAPUSTA N, RANJITH K. Rate and state dependent friction and the stability of sliding between elastically deformable solids [J]. Journal of Mechanics and Physics of Solids, 2001, 49(9): 1865–1898. DOI: 10.1016/S0022-5096(01)00042-4.
    [23]
    DI TORO G, HIROSE T, NIELSEN S, et al. Natural and experimental evidence of melt lubrication of faults during earthquakes [J]. Science, 2006, 311(5761): 647–649. DOI: 10.1126/science.1121012.
    [24]
    DI TORO G, HAN R, HIROSE T, et al. Fault lubrication during earthquakes [J]. Nature, 2011, 471(7339): 494–8. DOI: 10.1038/nature09838.
    [25]
    GOLDSBY D L, TULLIS T E. Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates [J]. Science, 2011, 334(6053): 216–218. DOI: 10.1126/science.1207902.
    [26]
    AHARONOV E, SCHOLZ C H. A physics‐based rock friction constitutive law: Steady state friction [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2): 1591–1614. DOI: 10.1002/2016JB013829.
    [27]
    SPAGNUOLO E, NIELSEN S, VIOLAY M, et al. An empirically based steady state friction law and implications for fault stability [J]. Geophysical Research Letters, 2016, 43(7): 3263–71. DOI: 10.1002/2016GL067881.
    [28]
    CHEN J Y, NIEMEIJER A R, SOIERS C J. Microphysical modeling of carbonate fault friction at slip rates spanning the full seismic cycle [J]. Journal of Geophysical Research: Solid Earth, 2021, 126(3): 021024. DOI: 10.1029/2020JB021024.
    [29]
    SELVADURAI P, GLASER S. Asperity generation and its relationship to seismicity on a planar fault: A laboratory simulation [J]. Geophysical Journal International, 2017, 208(2): 1009–1025. DOI: 10.1093/gji/ggw439.
    [30]
    RECHES Z, ZU X, CARPENTWER B M. Energy-flux control of the steady-state, creep, and dynamic slip modes of faults [J]. Scientific Reports, 2019, 9(1): 10627. DOI: 10.1038/s41598-019-46922-1.
    [31]
    IKARI M J, MARONE C, SAFFER DM, et al. Slip weakening as a mechanism for slow earthquakes [J]. Nature Geosciences, 2013, 6(6): 468–472. DOI: 10.1038/NGEO18198.
    [32]
    CHEN X, MADDEN A S, BICKMORE B R, et al. Dynamic weakening by nanoscale smoothing during high-velocity fault slip [J]. Geology, 2013, 41(7): 739–7428. DOI: 10.1130/G34169.1.
    [33]
    BYERLEE J D. Friction of Rocks [J]. Pure and Applied Geophysics, 1978, 116(4-5): 615–626. DOI: 10.1007/BF00876528.
    [34]
    CHESTER J S, CHESTER F M, KRONENBERG A K. Fracture surface energy of the Punchbowl fault, San Andreas system [J]. Nature, 2005, 437(7055): 133–136. DOI: 10.1038/nature03942.
    [35]
    SIBSON R H. Thickness of the seismic slip zone[J], Bulletin of the Seismological Society of America. 2003, 93 (3): 1169-1178. DOI: 10.1785/0120020061.
    [36]
    MAJMUDAR T S, BEHINGGER R P. Contact force measurements and stress induced anisotropy in granular materials [J]. Nature, 2005, 435(7045): 1079–1082. DOI: 10.1038/nature03805.
    [37]
    ANTONY S J. Link between single-particle properties and macroscopic properties in particulate assemblies: role of structures within structures [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1861): 2879–2891. DOI: 10.1098/rsta.2007.0004.
    [38]
    RICHEFEU V, El YOUSSOUFI MS, AZEMA E, et al. Force transmission in dry and wet granular media [J]. Powder Technology., 2009, 190(1-2): 258–263. DOI: 10.1016/j.powtec.2008.04.069.
    [39]
    KOCHARYAN G G, NOVIKOV V A, OSTAPCHUK A A, et al. A study of different fault slip modes governed by the gouge material composition in laboratory experiments [J]. Geophysical Journal International., 2017, 208(1): 521–528. DOI: 10.1093/gji/ggw409.
    [40]
    BUDKOV A M, KOCHARYAN G G. Experimental study of different modes of block sliding along interface: part 3: numerical modeling [J]. Physical Mesomechanics, 2017, 20(2): 203–208. DOI: 10.1134/S1029959917020102.
    [41]
    OSTAPCHUK A A, MOROZOVA K G. On the Mechanism of Laboratory Earthquake Nucleation Highlighted by Acoustic Emission [J]. Scientific Reports., 2020, 10(1): 7245. DOI: 10.1038/s41598-020-64272-1.
    [42]
    OSTAPCHUK A A, MOROZOVA K G, MARKOV V, et al. Acoustic Emission Reveals Multiple Slip Modes on a Frictional Fault [J]. Frontiers of Earth Science, 2021, 9: 657487. DOI: 10.3389/feart.2021.657487.
    [43]
    LU K, BRODSY E E, KAVEHPOUR H P. Shear-weakening of the transitional regime for granular flow: the role of compressibility [J]. Journal of Fluid Mechanics, 2007, 587: 347–372. DOI: 10.1017/S0022112007007331.
    [44]
    CHEN J Y, NIEMEIJER A R, SPLERS C. Microphysical modeling of carbonate fault friction at slip rates spanning the full seismic cycle [J]. Journal of Geophysical Research: Solid Earth: JGR, 2021, 126(3): e2020JB021024. DOI: 10.1029/2020JB021024.
    [45]
    HAYWARD K S, HAWKINS R, COX S F, et al. Rheological controls on asperity weakening during earthquake slip [J]. Journal of Geophysical Research: Solid Earth, 2019, 124(12): 12736–12762. DOI: 10.1029/2019JB018231.
    [46]
    POZZI G, PAOLA N, NIELSEN S, et al. Coseismic fault lubrication by viscous deformation [J]. Nature Geoscience., 2021, 14(6): 437–442. DOI: 10.1038/s41561-021-00747-8.
    [47]
    FAGERENG A, BEALL A. Is complex fault zone behaviour a reflection of rheological heterogeneity? [J]. Philosophical Transactions of the Royal Society A, 2021, 379(2193): 20190421. DOI: 10.1098/rsta.2019.0421.
    [48]
    RADIONOV V N, SIZOV I A, TSVETKOV V M. Fundamental of geomechanics[M], Nedra, Moscow, 1986.
    [49]
    TURUNTAEV S B, KULIJKIN A M, GERASOMOVZ T I, et al. Dynamics of localization shear deformation in sand [J]. Doklady Akademii Nauk (Reports of Russian Academy of Science), 1997, 354(1): 105–108.
    [50]
    LANDAU L D, LIFSHITZ E M. Theory of elasticity[M]. Pergamon, New York, 1959.
    [51]
    ALONSO-MARROQUIN F, VARDOULAKIS I. Micromechanics of shear bands in granular media[C]//Powders and Grains 2005 - Proceedings of the 5th International Conference on Micromechanics of Granular Media (2005), The Netherlands: A. A. Balkema, Leiden, 2005: 701–704.
    [52]
    ABEDI S, RECHENMACHER A L, ORLANDO A D. Vortex formation and dissolution in sheared sand [J]. Granular Matter, 2012, 14(6): 695–705. DOI: 10.1007/s10035-012-0369-5.
    [53]
    KIM V A, KARIMOV S A. Manifestation of physical mesomechanics at contact interaction [J]. Journal of state technical university of komsomolsky at Amur, Science on nature and technique, 2014, II-1(18): 79–85.
    [54]
    BIRD R B, ARMSTRONG R C, HASSAGER O. Dynamics of polymeric liquid, vol. 2, 2-nd ed[M]. Wiley, New York, 1987.
    [55]
    CHOW T S. Mesoscopic physics of complex materials[M]. Springer, New York, 2000.
    [56]
    SIMMONS J H, Mohr R K, MONTROSE C J. Non-newtonian viscous flow in glass[J]. Journal of Applied Physics, 53(6)1982: 4075–4080. DOI: 10.1063/1.331272.
    [57]
    SIMMONS J H, OCHOA R, SIMMONS K D, et al. Non-Newtonian viscous flow in soda-lime-silica glass at forming and annealing temperatures[J]. Journal of Non-Crystalline Solids, 105(3), 1988: 313–322. DOI: 10.1016/0022-3093(88)90325-0.
    [58]
    SIMMONS J H. What is so exciting about non-linear viscous flow in glass, molecular dynamics simulations of brittle fracture and semiconductor-glass quantum composites[J]. Journal of Non-Crystalline Solids, 239, 1988: 1–15. DOI: 10.1016/S0022-3093(98)00741-8.
    [59]
    GRADY D E, Shock wave properties of brittle solids: 950846 [R]. Sandia National Laboratory, 1995, 9–20.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (70) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return