Citation: | WEI Shengcheng, YIN Qiang, XU Yadong, XIONG Xinyu. Influence of support conditions on the flow field overpressure inside the crew compartment of a truck-mounted howitzer under muzzle blast[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0401 |
[1] |
钱林方, 徐亚栋, 陈龙淼. 车载炮设计理论和方法 [M]. 北京: 科学出版社, 2022: 1–2.
|
[2] |
魏胜程, 钱林方, 徐亚栋, 等. 车载炮驾驶室表面炮口冲击波超压特性 [J]. 兵工学报, 2024, 45(11): 3792–3805. DOI: 10.12382/bgxb.2023.0687.
WEI S C, QIAN L F, XU Y D, et al. Characteristics of muzzle shock wave overpressure on the surface of vehicle-mounted howitzer’s crew compartment [J]. Acta Armamentarii, 2024, 45(11): 3792–3805. DOI: 10.12382/bgxb.2023.0687.
|
[3] |
WEI S C, QIAN L F, XU Y D, et al. Flow field distribution and overpressure characteristics inside the crew compartment of a truck-mounted howitzer under the effect of muzzle blast [J]. Defence Technology, 2025, 44: 190–205. DOI: 10.1016/j.dt.2024.09.008.
|
[4] |
LI Z J, WANG H, CHEN C S, et al. Numerical and experimental investigation into the evolution of the shock wave when a muzzle jet impacts a constrained moving body [J]. Defence Technology, 2024, 33: 317–326. DOI: 10.1016/j.dt.2023.09.012.
|
[5] |
缪伟, 尹强, 钱林方. 火炮后效期火药气体流空过程的近似计算方法 [J]. 兵工学报, 2021, 42(7): 1381–1391. DOI: 10.3969/j.issn.1000-1093.2021.07.005.
MIAO W, YIN Q, QIAN L F. An approximate calculation method for ejection of propellant gas during after-effect period of artillery [J]. Acta Armamentarii, 2021, 42(7): 1381–1391. DOI: 10.3969/j.issn.1000-1093.2021.07.005.
|
[6] |
王丹宇, 南风强, 廖昕, 等. 考虑化学反应的大口径火炮炮口流场特性 [J]. 兵工学报, 2021, 42(8): 1624–1630. DOI: 10.3969/j.issn.1000-1093.2021.08.006.
WANG D Y, NAN F Q, LIAO X, et al. Characteristics of muzzle flow field of large caliber gun considering chemical reaction [J]. Acta Armamentarii, 2021, 42(8): 1624–1630. DOI: 10.3969/j.issn.1000-1093.2021.08.006.
|
[7] |
BAI W B, YU Y G, ZHANG X W. Numerical simulation of the underwater gun using gas-curtain launch [J]. Physics of Fluids, 2024, 36(3): 036128. DOI: 10.1063/5.0196584.
|
[8] |
孙全兆, 范社卫, 王殿荣, 等. 某突击炮炮口流场数值模拟研究 [J]. 弹道学报, 2019, 31(4): 63–67. DOI: 10.12115/j.issn.1004-499X(2019)04-011.
SUN Q Z, FAN S W, WANG D R, et al. Numerical study of muzzle flow field of assault gun [J]. Journal of Ballistics, 2019, 31(4): 63–67. DOI: 10.12115/j.issn.1004-499X(2019)04-011.
|
[9] |
LI P F, ZHANG X B. Numerical research on adverse effect of muzzle flow formed by muzzle brake considering secondary combustion [J]. Defence Technology, 2021, 17(4): 1178–1189. DOI: 10.1016/j.dt.2020.06.019.
|
[10] |
LI P F, ZHANG X B. Numerical research on the impinging effect of sequential muzzle blast waves formed by successive shooting at high frequency [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(9): 1416–1427. DOI: 10.1002/prep.202000043.
|
[11] |
SUN Z Q, LI Q, QU P, et al. Numerical investigation of the flame suppression mechanism of porous muzzle brake [J]. Physics of Fluids, 2023, 35(7): 075120. DOI: 10.1063/5.0156175.
|
[12] |
康越, 马天, 王俊龙, 等. 不同海拔高度炮口冲击波动态演化特性数值模拟研究 [J]. 爆炸与冲击, 2024, 44(12): 121421. DOI: 10.11883/bzycj-2024-0108.
KANG Y, MA T, WANG J L, et al. Numerical simulation study on the dynamic evolution characteristics of muzzle shock waves at different altitudes [J]. Explosion and Shock Waves, 2024, 44(12): 121421. DOI: 10.11883/bzycj-2024-0108.
|
[13] |
余海伟, 袁军堂, 汪振华, 等. 新型结构炮口制退器的膛口冲击波数值研究与性能分析 [J]. 高压物理学报, 2020, 34(6): 101–111. DOI: 10.11858/gywlxb.20200568.
YU H W, YUAN J T, WANG Z H, et al. Muzzle blast wave investigation and performance analysis of new-structure muzzle brake based on numerical simulation [J]. Chinese Journal of high Pressure Physics, 2020, 34(6): 101–111. DOI: 10.11858/gywlxb.20200568.
|
[14] |
李鸿志, 姜孝海, 王杨, 等. 中间弹道学 [M]. 北京: 北京理工大学出版社, 2014: 35–41.
LI H Z, JIANG X H, WANG Y, et al. Intermediate ballistics [M]. Beijing: Beijing Institute of Technology Press, 2014: 35–41.
|
[15] |
ZHUO C F, FENG F, WU X S, et al. Numerical simulation of the muzzle flows with base bleed projectile based on dynamic overlapped grids [J]. Computers and Fluids, 2014, 105: 307–320. DOI: 10.1016/j.compfluid.2014.08.006.
|
[16] |
LUO Y, XU D, LI H. Analysis of the dynamic characteristics of the muzzle flow field and investigation of the influence of projectile nose shape [J]. Applied Sciences, 2020, 10(4): 1468. DOI: 10.3390/app10041468.
|
[17] |
LEI H X, ZHAO J L, WANG Z J. Numerical simulation and experiments on muzzle blast overpressure in large-caliber weapons [J]. Journal of Engineering Science and Technology Review, 2016, 9(5): 111–116. DOI: 10.25103/jestr.095.17.
|
[18] |
CHEN Q K, LI P F, ZHOU Q, et al. Research on the measurement of muzzle shock wave pressure field for a naval gun [J]. IOP Conference Series: Earth and Environmental Science, 2021, 791(1): 012096. DOI: 10.1088/1755-1315/791/1/012096.
|
[19] |
MOUMEN A, STIRBU B, GROSSEN J, et al. Particle image velocimetry for velocity measurement of muzzle flow: detailed experimental study [J]. Powder Technology, 2022, 405: 117509. DOI: 10.1016/J.POWTEC.2022.117509.
|
[20] |
赖富文, 孔凡胜, 高赫, 等. 基于LXI总线的炮口冲击波分布式测试系统设计 [J]. 兵器装备工程学报, 2021, 42(9): 183–188. DOI: 10.11809/bqzbgcxb2021.09.029.
LAI F W, KONG F S, GAO H, et al. Design of distributed system for measuring muzzle blast wave based on LXI bus [J]. Journal of Ordnance Equipment Engineering, 2021, 42(9): 183–188. DOI: 10.11809/bqzbgcxb2021.09.029.
|
[21] |
SEKAR V, JIANG Q H, SHU C, et al. Fast flow field prediction over airfoils using deep learning approach [J]. Physics of Fluids, 2019, 31(5): 057103. DOI: 10.1063/1.5094943.
|
[22] |
DURU C, ALEMDAR H, BARAN O U. A deep learning approach for the transonic flow field predictions around airfoils [J]. Computers and Fluids, 2022, 236: 105312. DOI: 10.1016/j.compfluid.2022.105312.
|
[23] |
NGUYEN N T T, MASKALY G R, LIAO A S, et al. Predicting shockwaves in radiograph images using different deep learning models [C]//SPIE Optical Engineering+Applications. San Diego: SPIE, 2021: 112–123. DOI: 10.1117/12.2594621.
|
[24] |
HUI X Y, BAI J Q, WANG H, et al. Fast pressure distribution prediction of airfoils using deep learning [J]. Aerospace Science and Technology, 2020, 105: 105949. DOI: 10.1016/j.ast.2020.105949.
|
[25] |
JIN S Y, CHEN S S, FENG C, et al. Deep learning for airfoil aerodynamic-electromagnetic coupling optimization with random forest [J]. Physics of Fluids, 2024, 36(1): 017110. DOI: 10.1063/5.0182455.
|
[26] |
ZHOU M D, QIAN L F, CAO C Y, et al. Research on simulation of gun muzzle flow field empowered by artificial intelligence [J]. Defence Technology, 2024, 32: 196–208. DOI: 10.1016/j.dt.2023.02.006.
|
[27] |
陈钢. 内腔声-结构耦合系统的数值模拟与优化设计 [D]. 大连: 大连理工大学, 2008: 15–33.
CHEN G. Numerical simulation and design optimization for interior acoustic-structural coupled systems [D]. Dalian: Dalian University of Technology, 2008: 15–33.
|
[28] |
王彬星. 重型汽车车内声压级预测与主要噪声源分析 [D]. 北京: 清华大学, 2013: 83–111.
WANG B X. Sound pressure level prediction and main source analysis of heavy duty truck interior noise [D]. Beijing: Tsinghua University, 2013: 83–111.
|
[29] |
MA J, WANG J, HAN Y, et al. Towards data-driven modeling for complex contact phenomena via self-optimized artificial neural network methodology [J]. Mechanism and Machine Theory, 2023, 182: 105223. DOI: 10.1016/j.mechmachtheory.2022.105223.
|
[30] |
魏然. 爆炸冲击下车身结构防护机理及多学科优化研究 [D]. 南京: 南京理工大学, 2017: 29–52.
WEI R. Protection mechanism and multidisciplinary optimization of vehicle body structure under blast shock [D]. Nanjing: Nanjing University of Science and Technology, 2017: 29–52.
|
[31] |
MA J, BAI M H, WANG J, et al. A novel variable restitution coefficient model for sphere-substrate elastoplastic contact/impact process [J]. Mechanism and Machine Theory, 2024, 202: 105773. DOI: 10.1016/j.mechmachtheory.2024.105773.
|
[32] |
ZHOU S J, CHEN G S, QIAN L F, et al. HLFEMP: a coupled MPM-FEM method under a hybrid updated and total lagrangian framework [J]. Applied Mathematical Modelling, 2024, 136: 115644. DOI: 10.1016/j.apm.2024.115644.
|
[33] |
ZHUO C F, YAO W J, WU X S, et al. Research on the muzzle blast flow with gas-particle mixtures based on Eulerian-Eulerian approach [J]. Journal of Mechanics, 2016, 32(2): 185–195. DOI: 10.1017/jmech.2015.44.
|
[34] |
张小兵. 枪炮内弹道学 [M]. 北京: 北京理工大学出版社, 2014: 142–144.
ZHANG X B. Interior ballistics of guns [M]. Beijing: Beijing Institute of Technology Press, 2014: 142–144.
|
[35] |
陈南. 汽车振动与噪声控制 [M]. 3版. 北京: 人民交通出版社, 2021: 62–76.
|