| Citation: | PAN Chuanyu, HUANG Xilong, LI Ping, LI Tao, FU Hua, SHANG Hailin. Investigation on combustion reaction evolution model of charge with mass inertia constraint via non-shock ignition[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0404 |
| [1] |
PICART D, BOUTON E. Non shock ignition of HMX based high explosives: thermo mechanical numerical study [C]// 14th International Detonation Symposium, 2010: 717–724.
|
| [2] |
ASAY B W. Shock Wave Science and Technology Reference Library [M]. Berlin, Heidelberg: Springer, 2010: 11–488. DOI: 10.1007/978-3-540-87953-4.
|
| [3] |
黄辉, 黄亨建, 王杰, 等. 安全弹药的发展思路与技术途径 [J]. 含能材料, 2023, 31(10): 1079–1087. DOI: 10.11943/CJEM2023165.
HUANG H, HUANG H J, WANG J, et al. Development ideas and technical approaches for safety ammunition [J]. Chinese Journal of Energetic Materials, 2023, 31(10): 1079–1087. DOI: 10.11943/CJEM2023165.
|
| [4] |
GRIFFITHS S K, NILSON R H. Similarity analysis of fracture growth and flame spread in deformable solid propellants [J]. Combustion and Flame, 1992, 88(3/4): 369–383. DOI: 10.1016/0010-2180(92)90040-V.
|
| [5] |
BELYAEV A F, BOBOLEV V K, KOROTKOV A I, et al. Transition from deflagration to detonation in condensed phases[M], translation. Orginial work published 1973, 1975.
|
| [6] |
JACKSON S I, HILL L G. Runaway reaction due to gas-dynamic choking in solid explosive containing a single crack [J]. Proceedings of the Combustion Institute, 2009, 32(2): 2307–2313. DOI: 10.1016/j.proci.2008.05.089.
|
| [7] |
胡海波, 傅华, 李涛, 等. 压装密实炸药装药非冲击点火反应传播与烈度演化实验研究进展 [J]. 爆炸与冲击, 2020, 40(1): 1–13. DOI: 10.11883/bzycj-2019-0346.
HU H B, FU H, LI T, et al. Progress in experimental studies on the evolution behaviors of non-shock initiation reaction in low porosity pressed explosive with confinement [J]. Explosion and Shock Waves, 2020, 40(1): 1–13. DOI: 10.11883/bzycj-2019-0346.
|
| [8] |
BERGHOUT H L, SON S F, ASAY B W. Convective burning in gaps of PBX 9501 [J]. Proceedings of the Combustion Institute, 2000, 28(1): 911–917. DOI: 10.1016/S0082-0784(00)80297-0.
|
| [9] |
BERGHOUT H L, SON S F, SKIDMORE C B, et al. Combustion of damaged PBX 9501 explosive [J]. Thermochimica Acta, 2002, 384(1/2): 261–277. DOI: 10.1016/S0040-6031(01)00802-4.
|
| [10] |
BERGHOUT H L, SON S F, HILL L G, et al. Flame spread through cracks of PBX 9501 (a composite octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine-based explosive) [J]. Journal of Applied Physics, 2006, 99(11): 114901. DOI: 10.1063/1.2196219.
|
| [11] |
尚海林, 杨洁, 胡秋实, 等. 炸药裂缝中的对流燃烧现象实验研究 [J]. 兵工学报, 2019, 40(1): 99–106. DOI: 10.3969/j.issn.1000-1093.2019.01.012.
SHANG H L, YANG J, HU Q S, et al. Experimental research on convective burning in explosive cracks [J]. Acta Armamentarii, 2019, 40(1): 99–106. DOI: 10.3969/j.issn.1000-1093.2019.01.012.
|
| [12] |
尚海林, 杨洁, 李涛, 等. 约束HMX基PBX炸药裂缝中燃烧演化实验 [J]. 含能材料, 2019, 27(12): 1056–1061. DOI: 10.11943/CJEM2018339.
SHANG H L, YANG J, LI T, et al. Experimental study on burning evolution in confined HMX-based PBX cracks [J]. Chinese Journal of Energetic Materials, 2019, 27(12): 1056–1061. DOI: 10.11943/CJEM2018339.
|
| [13] |
尚海林, 马骁, 程赋, 等. 炸药燃烧产物驱动裂纹动态扩展耦合特性 [J]. 含能材料, 2019, 27(10): 819–823. DOI: 10.11943/CJEM2019136.
SHANG H L, MA X, CHENG F, et al. Coupling properties of crack penetration driven by explosive burning products [J]. Chinese Journal of Energetic Materials, 2019, 27(10): 819–823. DOI: 10.11943/CJEM2019136.
|
| [14] |
SMILOWITZ L, HENSON B F, ROMERO J J, et al. Direct observation of the phenomenology of a solid thermal explosion using time-resolved proton radiography [J]. Physical Review Letters, 2008, 100(22): 228301. DOI: 10.1103/PhysRevLett.100.228301.
|
| [15] |
SMILOWITZ L, HENSON B F, ROMERO J J, et al. Thermal decomposition of energetic materials viewed via dynamic x-ray radiography [J]. Applied Physics Letters, 2014, 104(2): 024107. DOI: 10.1063/1.4858965.
|
| [16] |
SMILOWITZ L, HENSON B F, OSCHWALD D, et al. Internal sub-sonic burning during an explosion viewed via dynamic X-ray radiography [J]. Applied Physics Letters, 2017, 111(18): 184103. DOI: 10.1063/1.5004424.
|
| [17] |
SMILOWITZ L, HENSON B F, ROMERO J J, et al. The evolution of solid density within a thermal explosion. I. proton radiography of pre-ignition expansion, material motion, and chemical decomposition [J]. Journal of Applied Physics, 2012, 111(10): 103515. DOI: 10.1063/1.4711071.
|
| [18] |
SMILOWITZ L, HENSON B F, ROMERO J J, et al. The evolution of solid density within a thermal explosion II. dynamic proton radiography of cracking and solid consumption by burning [J]. Journal of Applied Physics, 2012, 111(10): 103516. DOI: 10.1063/1.4711072.
|
| [19] |
SWANSON S R. Application of Schapery's theory of viscoelastic fracture to solid propellant [J]. Journal of Spacecraft and Rockets, 1976, 13(9): 528–533. DOI: 10.2514/3.27925.
|
| [20] |
BENNETT J G, HABERMAN K S, JOHNSON J N, et al. A constitutive model for the non-shock ignition and mechanical response of high explosives [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(12): 2303–2322. DOI: 10.1016/S0022-5096(98)00011-8.
|
| [21] |
HILL L G. Burning crack networks and combustion bootstrapping in cookoff explosions [J]. AIP Conference Proceedings, 2006, 845(1): 531–534. DOI: 10.1063/1.2263377.
|
| [22] |
段卓平, 白志玲, 白孟璟, 等. 强约束固体炸药燃烧裂纹网络反应演化模型 [J]. 兵工学报, 2021, 42(11): 2291–2299. DOI: 10.3969/j.issn.1000-1093.2021.11.001.
DUAN Z P, BAI Z L, BAI M J, et al. Burning-crack networks model for combustion reaction growth of solid explosives with strong confinement [J]. Acta Armamentarii, 2021, 42(11): 2291–2299. DOI: 10.3969/j.issn.1000-1093.2021.11.001.
|
| [23] |
白志玲, 段卓平, 李治, 等. 热刺激约束DNAN基不敏感熔铸炸药装药点火后反应演化调控模型 [J]. 含能材料, 2023, 31(10): 1004–1012. DOI: 10.11943/CJEM2023160.
BAI Z L, DUAN Z P, LI Z, et al. Regulation model for reaction evolution of confined DNAN-based cast explosives after ignition under thermal stimulation [J]. Chinese Journal of Energetic Materials, 2023, 31(10): 1004–1012. DOI: 10.11943/CJEM2023160.
|
| [24] |
GRAHAM K J. Mitigation of fuel fire threat to large rocket motors by venting [C]//Insensitive Munitions & Energetic Materials Symposium Munich. Munich: Air Force Research Laboratory, 2010.
|