Citation: | ZHANG Xu, LIU Xiaohui, LIU Chujia, LUO Ying. Study on dynamic energy dissipation mechanism and damage characteristics of high-temperature marble[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0405 |
[1] |
ROCCHI V, SAMMONDS P R, KILBURN C R J. Fracturing of Etnean and Vesuvian rocks at high temperatures and low pressures [J]. Journal of Volcanology and Geothermal Research, 2004, 132(2/3): 137–157. DOI: 10.1016/S0377-0273(03)00342-1.
|
[2] |
PARK J W, LEE Y K, PARK C, et al. Crack initiation and propagation thresholds of Hwangdeung granite under elevated temperature [J]. Geosciences Journal, 2022, 26(6): 715–729. DOI: 10.1007/s12303-022-0015-0.
|
[3] |
KWON S, XIE L M, PARK S, et al. Correction to: characterization of 4.2-km-deep fractured granodiorite cores from Pohang geothermal reservoir, Korea [J]. Rock Mechanics and Rock Engineering, 2020, 53(1): 453. DOI: 10.1007/s00603-019-01925-2.
|
[4] |
HAJPÁL M. Changes in sandstones of historical monuments exposed to fire or high temperature [J]. Fire Technology, 2002, 38(4): 373–382. DOI: 10.1023/A:1020174500861.
|
[5] |
谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则 [J]. 岩石力学与工程学报, 2005, 24(17): 3003–3010. DOI: 10.3321/j.issn:1000-6915.2005.17.001.
XIE H P, JU Y, LI L Y. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003–3010. DOI: 10.3321/j.issn:1000-6915.2005.17.001.
|
[6] |
谢和平, 鞠杨, 黎立云, 等. 岩体变形破坏过程的能量机制 [J]. 岩石力学与工程学报, 2008, 27(9): 1729–1740. DOI: 10.3321/j.issn:1000-6915.2008.09.001.
XIE H P, JU Y, LI L Y, et al. Energy mechanism of deformation and failure of rock masses [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9): 1729–1740. DOI: 10.3321/j.issn:1000-6915.2008.09.001.
|
[7] |
WANG Z L, SHI H, WANG J G. Mechanical behavior and damage constitutive model of granite under coupling of temperature and dynamic loading [J]. Rock Mechanics and Rock Engineering, 2018, 51(10): 3045–3059. DOI: 10.1007/s00603-018-1523-0.
|
[8] |
蔚立元, 武东阳, 张涛, 等. 高温–水冷却花岗岩动态压缩力学特性的应变率效应研究 [J]. 岩石力学与工程学报, 2022, 41(S1): 2615–2625. DOI: 10.13722/j.cnki.jrme.2021.0316.
WEI L Y, WU D Y, ZHANG T, et al. Study on strain rate effect of dynamic compression mechanical properties of high-temperature granite after cooling with water [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S1): 2615–2625. DOI: 10.13722/j.cnki.jrme.2021.0316.
|
[9] |
PING Q, ZHANG C L, SUN H J, et al. Dynamic mechanical properties and energy dissipation analysis of sandstone after high temperature cycling [J]. Shock and Vibration, 2020, 2020: 8848595. DOI: 10.1155/2020/8848595.
|
[10] |
平琦, 吴明静, 袁璞, 等. 冲击载荷作用下高温砂岩动态力学性能试验研究 [J]. 岩石力学与工程学报, 2019, 38(4): 782–792. DOI: 10.13722/j.cnki.jrme.2018.1299.
PING Q, WU M J, YUAN P, et al. Experimental study on dynamic mechanical properties of high temperature sandstone under impact loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 782–792. DOI: 10.13722/j.cnki.jrme.2018.1299.
|
[11] |
田文岭, 杨圣奇, 黄彦华, 等. 花岗岩高温高压损伤破裂细观机制模拟研究 [J]. 岩石力学与工程学报, 2022, 41(9): 1810–1819. DOI: 10.13722/j.cnki.jrme.2021.1260.
TIAN W L, YANG S Q, HUANG Y H, et al. Meso-fracture mechanism of granite specimens under high temperature and confining pressure by numerical simulation [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(9): 1810–1819. DOI: 10.13722/j.cnki.jrme.2021.1260.
|
[12] |
吴顺川, 郭沛, 张诗淮, 等. 基于巴西劈裂试验的花岗岩热损伤研究 [J]. 岩石力学与工程学报, 2018, 37(S2): 3805–3816.
|
[13] |
WU S C, GUO P, ZHANG S H, et al. Study on ther-maldamage of granite based on Brazilian splitting test [J]. Chinese Journ al of Rock Mechanics and Engineering, 2020, 53(11): 1136–1145. doi: 10.11784/tdxbz202001002
WU S C, GUO P, ZHANG S H, et al. Study on ther-maldamage of granite based on Brazilian splitting test [J]. Chinese Journ al of Rock Mechanics and Engineering, 2020, 53(11): 1136–1145. DOI: 10.11784/tdxbz202001002. XIA K W, CAI Y P, XU Y, et al. Experimental study of dynamic tensile failure of thermally damaged Fangshan marble subjected to hydrostatic confinement [J]. Journal of Tianjin University (Science and Technology), 2020, 53(11): 1136–1145. DOI: 10.11784/tdxbz202001002.
|
[14] |
张平, 任松, 张闯, 等. 循环扰动和高温作用下砂岩的岩爆倾向性及破坏特征研究 [J]. 岩土力学, 2023, 44(3): 771–783. DOI: 10.16285/j.rsm.2022.0448.
ZHANG P, REN S, ZHANG C, et al. Rockburst tendency and failure characteristics of sandstone under cyclic disturbance and high temperature [J]. Rock and Soil Mechanics, 2023, 44(3): 771–783. DOI: 10.16285/j.rsm.2022.0448.
|
[15] |
LI P F, SUN Q, GAO Q, et al. Size effect of failure mode of thermally damaged torus granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 163: 105331. DOI: 10.1016/j.ijrmms.2023.105331.
|
[16] |
刘锦, 李峰辉, 刘秀秀. 基于HJC模型的煤岩冲击损伤特性研究 [J]. 工程爆破, 2021, 27(2): 35–42,65. DOI: 10.19931/j.EB.20200159.
LIU J, LI F H, LIU X X. Study on impact damage characteristics of coal-rock based on HJC model [J]. Engineering Blasting, 2021, 27(2): 35–42,65. DOI: 10.19931/j.EB.20200159.
|
[17] |
李睿, 刘磊, 张志华, 等. 基于HJC模型高温后大理岩SHPB实验数值模拟研究 [J]. 工程爆破, 2022, 28(1): 37–44. DOI: 10.19931/j.EB.20210138.
LI R, LIU L, ZHANG Z H, et al. Numerical simulation of marble damaged by high temperature in SHPB experiment based on HJC model [J]. Engineering Blasting, 2022, 28(1): 37–44. DOI: 10.19931/j.EB.20210138.
|
[18] |
TIAN X C, TAO T J, LOU Q X, et al. Modification and application of limestone HJC constitutive model under the impact load [J]. Lithosphere, 2022, 2021(Special 7): 6443087. DOI: 10.2113/2022/6443087.
|
[19] |
赖玉彰. 热-力耦合作用下岩石力学特性及破坏机理研究 [D]. 赣州: 江西理工大学, 2023. DOI: 10.27176/d.cnki.gnfyc.2023.000655.
LAI Y Z. Study on mechanical properties and failure mechanism of rock under thermal-mechanical coupling [D]. Ganzhou: Jiangxi University of Science and Technology, 2023. DOI: 10.27176/d.cnki.gnfyc.2023.000655.
|
[20] |
宋帅, 杜闯, 李艳艳. 超高性能混凝土HJC本构模型参数确定及应用 [J]. 爆炸与冲击, 2023, 43(5): 053102. DOI: 10.11883/bzycj-2022-0343.
SONG S, DU G, LI Y Y. Determination and application of the HJC constitutive model parameters for ultra-high performance concrete [J]. Explosion And Shock Waves, 2023, 43(5): 053102. DOI: 10.11883/bzycj-2022-0343.
|
[21] |
程树范, 叶阳, 曾亚武, 等. 基于损伤-虚拟张拉裂纹模型的地下爆炸围岩破坏规律研究 [J]. 爆炸与冲击, 2022, 42(5): 055201. DOI: 10.11883/bzycj-2021-0414.
CHENG S F, YE Y, ZENG Y W, et al. Failure law of surrounding rock under underground explosion based on a new damage-virtual tensile crack model [J]. Explosion and Shock Waves, 2002, 42(5): 055201. DOI: 10.11883/bzycj-2021-0414.
|
[22] |
夏文彬. 热损伤花岗岩动态力学特性及数值模拟研究 [D]. 赣州: 江西理工大学, 2023. DOI: 10.27176/d.cnki.gnfyc.2023.000090.
XIA W B. Study on dynamic characteristics and numerical simulation of thermally damaged granite [D]. Ganzhou: Jiangxi University of Science and Technology, 2023. DOI: 10.27176/d.cnki.gnfyc.2023.000090.
|
[23] |
张志华. 高温条件下大理岩的动、静态力学性能研究 [D]. 昆明: 昆明理工大学, 2019. DOI: 10.27200/d.cnki.gkmlu.2019.000115.
|
[24] |
JOHNSON H G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures [J]. Journal of Applied Mechanics, 2011, 78(5): 051003. DOI: 10.1115/1.4004326.
|
[25] |
毕程程. 华山花岗岩HJC本构参数标定及爆破损伤数值模拟 [D]. 合肥: 合肥工业大学, 2018.
BI C C. Calibration of HJC constitutive parameters of Huashan granite and its blasting damage numerical simulation [D]. Hefei: Hefei University of Technology, 2018.
|
[26] |
李夕兵, 李地元, 郭雷, 等. 动力扰动下深部高应力矿柱力学响应研究 [J]. 岩石力学与工程学报, 2007, 26(5): 922–928. DOI: 10.3321/j.issn:1000-6915.2007.05.008.
LI X B, LI D Y, GUO L, et al. Study on mechanical response of highly-stressed pillars in deep mining under dynamic disturbance [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 922–928. DOI: 10.3321/j.issn:1000-6915.2007.05.008.
|
[27] |
余同希, 邱信明. 冲击动力学 [M]. 北京: 清华大学出版社, 2011.
|
[28] |
邱薛, 刘晓辉, 胡安奎, 等. 煤岩动态RHT本构模型数值模拟研究 [J]. 煤炭学报, 2024, 49(S1): 261–273. DOI: 10.13225/j.cnki.jccs.2023.0540.
QIU X, LIU X H, HU A K, et al. Research on numerical simulation of coal dynamic RHT constitutive model [J]. Journal of China Coal Society, 2024, 49(S1): 261–273. DOI: 10.13225/j.cnki.jccs.2023.0540.
|
[29] |
LI D Y, HAN Z Y, ZHU Q Q, et al. Stress wave propagation and dynamic behavior of red sandstone with single bonded planar joint at various angles [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117: 162–170. DOI: 10.1016/j.ijrmms.2019.03.011.
|