ZHOU Xingyuan, YUE Zhongwen, JIN Qingyu, REN Meng, XU Shengnan, LIU Wei, WANG Xu, XUE Kejun. Propagation mechanism of stationary and dynamic cracks under reflected explosive stress waves[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0409
Citation: ZHOU Xingyuan, YUE Zhongwen, JIN Qingyu, REN Meng, XU Shengnan, LIU Wei, WANG Xu, XUE Kejun. Propagation mechanism of stationary and dynamic cracks under reflected explosive stress waves[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0409

Propagation mechanism of stationary and dynamic cracks under reflected explosive stress waves

doi: 10.11883/bzycj-2024-0409
  • Received Date: 2024-10-28
  • Rev Recd Date: 2025-03-05
  • Available Online: 2025-03-12
  • The influence of reflected explosion stress waves on dynamic crack propagation behavior , as well as the connection between dynamic cracks and pre-existing cracks, was studied using dynamic photoelastic experiments. A high-speed camera was used to capture the full field photoelastic isochromatic fringe pattern of horizontally expanding explosive cracks. The explosive crack is a directional crack generated by detonating explosives in a blast hole containing a horizontal V-shaped groove. The propagation process of explosive cracks can be divided into three different stages. In the first stage, explosive detonation produces dynamic cracks. Simultaneously incident explosion stress waves propagate and interact with prefabricated vertical cracks. In the second stage, the reflected explosion stress waves interact with dynamic cracks. In the third stage, dynamic cracks connect with pre-existing cracks and release unloading stress waves. Considering both singular and non-singular stresses in the near-crack-tip region, three far-field-controlled constant stresses were adopted. The mixed mode stress intensity factor of dynamic cracks under the action of reflected stress waves was analyzed and calculated using the Newton-Raphson iteration method. The results indicate that the leading edge of the reflected pressure wave acts as a stretching wave and the trailing edge behaves as a compression wave. The tensile component of the reflected pressure wave applies tensile stress to the crack tip, increasing the dynamic stress intensity factor K and promoting crack propagation. On the contrary, the compressive component of the reflected pressure wave applies compressive stress to the crack tip, resulting in a decrease in the dynamic stress intensity factor K and suppressing crack propagation. Reflected shear waves can cause unstable crack propagation. It causes changes in the direction and velocity of crack propagation, resulting in a wavy crack trajectory. After the penetration of dynamic cracks and prefabricated cracks, the elastic energy stored near the crack tip is rapidly released to generate unloading waves. Due to the action of the unloading wave, stress is concentrated at the tip of the pre-existing crack, causing the formation of a secondary crack at the tip of the pre-existing crack.
  • [1]
    杨仁树, 李成孝, 陈骏, 等. 我国煤矿岩巷爆破掘进发展历程与新技术研究进展 [J]. 煤炭科学技术, 2023, 51(1): 224–241. DOI: 10.13199/j.cnki.cst.2022-1804.

    YANG R S, LI C X, CHEN J, et al. Development history and new technology research progress of rock roadway blasting excavation in coal mines in China [J]. Coal Science and Technology, 2023, 51(1): 224–241. DOI: 10.13199/j.cnki.cst.2022-1804.
    [2]
    卢文波, 周创兵, 陈明, 等. 开挖卸荷的瞬态特性研究 [J]. 岩石力学与工程学报, 2008, 27(11): 2184–2192. DOI: 10.3321/j.issn:1000-6915.2008.11.003.

    LU W B , ZHOU C B, CHEN M, et al. Research on transient characteristics of excavation unloading [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2184–2192. DOI: 10.3321/j.issn:1000-6915.2008.11.003.
    [3]
    IRWIN G R. Analysis of stresses and strains near the end of a crack traversing a plate [J]. Journal of Applied Mechanics, 1957, 24(3): 361–364. DOI: 10.1115/1.4011547.
    [4]
    FREUND L B. Crack propagation in an elastic solid subjected to general loading: Ⅲ. stress wave loading [J]. Journal of the Mechanics and Physics of Solids, 1973, 21(2): 47–61. DOI: 10.1016/0022-5096(73)90029-X.
    [5]
    王明洋, 钱七虎. 爆炸应力波通过节理裂隙带的衰减规律 [J]. 岩土工程学报, 1995, 17(2): 42–46. DOI: 10.1007/BF02943584.

    WANG M Y, QIAN Q H. Attenuation law of explosive wave propagation in cracks [J]. Chinese Journal of Geotechnical Engineering, 1995, 17(2): 42–46. DOI: 10.1007/BF02943584.
    [6]
    ROSSMANITH H P, SHUKLA A. Dynamic photoelastic investigation of interaction of stress waves with running cracks: a photoelastic study of interaction of stress waves with running cracks is conducted to investigate the influence of crack-wave interaction on crack-propagation behavior and crack branching [J]. Experimental Mechanics, 1981, 21(11): 415–422. DOI: 10.1007/BF02327143.
    [7]
    ROSSMANITH H P, SHUKLA A. Photoelastic investigation of stress wave diffraction about stationary crack-tips [J]. Journal of the Mechanics and Physics of Solids, 1981, 29(5/6): 397–412. DOI: 10.1016/0022-5096(81)90036-3.
    [8]
    THEOCARIS P S. Secondary afterfailure fractures due to transversely reflected waves [J]. Engineering Fracture Mechanics, 1981, 15(3/4): 283–290. DOI: 10.1016/0013-7944(81)90061-8.
    [9]
    朱振海. 爆炸应力波与径向裂纹相互作用的动光弹研究 [J]. 工程兵工程学院学报, 1987(2): 80–86, 79. DOI: CNKI:SUN:JFJL.0.1987-02-011.

    ZHU Z H. Study on the interaction between explosive stress waves and radial cracks [J]. Journal of the Engineering Corps Engineering College., 1987(2): 80–86, 79. DOI: CNKI:SUN:JFJL.0.1987-02-011.
    [10]
    DALLY J W. Dynamic photoelastic studies of fracture: dynamic photoelasticity is applied to characterize the behavior of cracks propagating in polymers and a metal with an ⇘-K relation [J]. Experimental Mechanics, 1979, 19(10): 349–361. DOI: 10.1007/BF02324250.
    [11]
    FREUND L B. Dynamic fracture mechanics [M]. Cambridge: Cambridge University Press, 1990. DOI: 10.1017/CBO9780511546761.
    [12]
    DALLY J W, BARKER D B. Dynamic measurements of initiation toughness at high loading rates [J]. Experimental Mechanics, 1988, 28(3): 298–303. DOI: 10.1007/BF02329026.
    [13]
    XU P, YANG R S, GUO Y, et al. Investigation of the effect of the blast waves on the opposite propagating crack [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 144: 104818. DOI: 10.1016/j.ijrmms.2021.104818.
    [14]
    岳中文, 杨仁树, 郭东明, 等. 爆炸应力波作用下缺陷介质裂纹扩展的动态分析 [J]. 岩土力学, 2009, 30(4): 949–954. DOI: 10.16285/j.rsm.2009.04.004.

    YUE Z W, YANG R S, GUO D M, et al. Dynamic analysis of crack propagation in media containing flaws under the explosive stress wave [J]. Rock and Soil Mechanics, 2009, 30(4): 949–954. DOI: 10.16285/j.rsm.2009.04.004.
    [15]
    岳中文, 杨仁树, 董聚才, 等. 爆炸载荷下板条边界斜裂纹的动态扩展行为 [J]. 爆炸与冲击, 2011, 31(1): 75–80. DOI: 10.11883/1001-1455(2011)01-0075-06.

    YUE Z W, YANG R S, DONG J C, et al. Dynamic propagation behaviors of an oblique edge crack in material under blast loading [J]. Explosion and Shock Waves, 2011, 31(1): 75–80. DOI: 10.11883/1001-1455(2011)01-0075-06.
    [16]
    QIU P, YUE Z W, YANG R S, et al. Modified mixed-mode caustics interpretation to study a running crack subjected to obliquely incident blast stress waves [J]. International Journal of Impact Engineering, 2021, 150: 103821. DOI: 10.1016/j.ijimpeng.2021.103821.
    [17]
    ZHANG J Z, HUANG H W, ZHANG D M, et al. Experimental study of the coupling effect on segmental shield tunnel lining under surcharge loading and excavation unloading [J]. Tunnelling and Underground Space Technology, 2023, 140: 105199. DOI: 10.1016/j.tust.2023.105199.
    [18]
    范勇, 卢文波, 杨建华, 等. 深埋洞室开挖瞬态卸荷诱发振动的衰减规律 [J]. 岩土力学, 2015, 36(2): 541–549. DOI: 10.16285/j.rsm.2015.02.033.

    FAN Y, LU W B, YANG J H, et al. Attenuation law of vibration induced by transient unloading during excavation of deep caverns [J]. Rock and Soil Mechanics, 2015, 36(2): 541–549. DOI: 10.16285/j.rsm.2015.02.033.
    [19]
    陈文涛, 宋春明, 程婷婷, 等. 基于相似材料的岩爆模型实验及其能量释放机制 [J]. 实验力学, 2012, 27(5): 630–636.

    CHEN W T, SONG C M, CHENG T T, et al. On the rock burst model experiment based on similar material and the energy releasing mechanism [J]. Experimental Mechanics, 2012, 27(5): 630–636.
    [20]
    杨善元. 岩石爆破动力学基础 [M]. 北京: 煤炭工业出版社, 1993.
    [21]
    卢文波, 金李, 陈明, 等. 节理岩体爆破开挖过程的动态卸载松动机理研究 [J]. 岩石力学与工程学报, 2005, 24(s1): 4653–4657.

    LU W B, JIN L, CHEN M, et al. Study on the mechanism of jointed rock mass loosing induced by dynamic unloading of initial stress during rock blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(s1): 4653–4657.
    [22]
    祝启虎. 地应力瞬态卸荷对围岩损伤特征的影响[D]. 武汉: 武汉大学, 2013.
    [23]
    李峰, 张亚光, 方书昊, 等. 冲击载荷作用下弹、塑性组合煤体动态损伤特性研究 [J]. 采矿与安全工程学报, 2016, 33(6): 1096–1102,1109. DOI: 10.13545/j.cnki.jmse.2016.06.020.

    LI F, ZHANG Y G, FANG S H, et al. Dynamic damage characteristics of elastic and plastic combination coal under impact loading [J]. Journal of Mining and Safety Engineering, 2016, 33(6): 1096–1102,1109. DOI: 10.13545/j.cnki.jmse.2016.06.020.
    [24]
    DALLY J W. An introduction to dynamic photoelasticity [J]. Experimental Mechanics, 1979, 20: 409–416. DOI: 10.1007/BF02328680.
    [25]
    杨仁树, 陈程, 岳中文, 等. 正入射爆炸应力波与运动裂纹作用的动态光弹性实验研究 [J]. 煤炭学报, 2018, 43(1): 87–94. DOI: 10.13225/j.cnki.jccs.2017.0353.

    YANG R S, CHEN C, YUE Z W, et al. Dynamic photoelastic investigation of interaction of normal incidence blasting stress waves with running cracks [J]. Journal of China Coal Society, 2018, 43(1): 87–94. DOI: 10.13225/j.cnki.jccs.2017.0353.
    [26]
    雷振坤. 结构分析数字光测力学 [M]. 大连: 大连理工大学出版社, 2012.

    LEI Z K. Digital photomechanics for structural analysis [M]. Dalian: Dalian University of Technology Press, 2012.
    [27]
    BRADLEY W B, KOBAYASHI A S. An investigation of propagating cracks by dynamic photoelasticity: a program was undertaken to provide experimentally an improved understanding of the elastic fields surrounding dynamic cracks and, in particular, stress fields surrounding arresting dynamic cracks [J]. Experimental Mechanics, 1970, 10(3): 106–113. DOI: 10.1007/BF02325114.
    [28]
    SCHROEDL M A, SMITH C W. Local stresses near deep surface flaws under cylindrical bending fields [M]//KAUFMAN J G, SWEDLOW J L, CORTEN H T, et al. Progress in Flaw Growth and Fracture Toughness Testing. Philadelphia: ASTM International, 1973: 45-63. DOI: 10.1520/STP49636S.
    [29]
    ETHERIDGE J M, DALLY J W. A critical review of methods for determining stress-intensity factors from isochromatic fringes: three two-parameter methods of fracture analysis for determining the stress-intensity factor from photoelastic isochromatic-fringe data are critically reviewed by the authors [J]. Experimental Mechanics, 1977, 17(7): 248–254. DOI: 10.1007/BF02324838.
    [30]
    IRWIN G R, DALLY J W, KOBATSHI T, et al. On the determination of the å-K relationship for birefringent polymers: procedures for determining the å-K relationship from isochromatic-fringe loops are discussed: a correction factor to account for dynamic effects due to crack velocity is introduced [J]. Experimental Mechanics, 1979, 19(4): 121–128. DOI: 10.1007/BF02324224.
    [31]
    SMITH D G, SMITH C W. Photoelastic determination of mixed mode stress intensity factors [J]. Engineering Fracture Mechanics, 1972, 4(2): 357–366. DOI: 10.1016/0013-7944(72)90050-1.
    [32]
    PENG L, YUE Z, XU S, et al. Experimental study on the influence of biaxial confining pressure on dynamic cracks and its interaction with blasting stress wave [J]. Theoretical and Applied Fracture Mechanics, 2023, 123: 103719. DOI: 10.1016/j.tafmec.2022.103719.
    [33]
    岳中文, 王煦, 杨仁树, 等. 一种动光弹模型材料的制作方法及其应用 [J]. 实验力学, 2017, 32(2): 179–188. DOI: 10.7520/1001-4888-16-148.

    YUE Z W, WANG X, YANG R S, et al. A method of dynamic photoelastic experimental model material and its application [J]. Journal of Experimental Mechanics, 2017, 32(2): 179–188. DOI: 10.7520/1001-4888-16-148.
    [34]
    YUE Z, QIU P, YANG R, et al. Experimental study on a Mach cone and trailing Rayleigh waves in a stress wave chasing running crack problem [J]. Theoretical and Applied Fracture Mechanics, 2019, 104: 102371. DOI: 10.1016/j.tafmec.2019.102371.
    [35]
    杨善元. 岩石爆破动力学基础 [M]. 北京: 煤炭工业出版社, 1993.
    [36]
    杨仁树, 许鹏, 岳中文, 等. 圆孔缺陷与Ⅰ型运动裂纹相互作用的试验研究 [J]. 岩土力学, 2016, 37(6): 1597–1602. DOI: 10.16285/j.rsm.2016.06.009.

    YANG R S, XU P, YUE Z W, et al. Laboratory study of interaction between a circular hole defect and mode I moving crack [J]. Rock and Soil Mechanics, 2016, 37(6): 1597–1602. DOI: 10.16285/j.rsm.2016.06.009.
    [37]
    YANG R, XU P, YUE Z, et al. Dynamic fracture analysis of crack-defect interaction for mode I running crack using digital dynamic caustics method [J]. Engineering Fracture Mechanics, 2016, 161: 63–75. DOI: 10.1016/j.engfracmech.2016.04.042.
    [38]
    胡进军, 谢礼立. 地震超剪切破裂研究现状 [J]. 地球科学进展, 2011, 26(1): 39–47. DOI: 10.11867/j.issn.1001-8166.2011.01.0039.

    HU J J, XIE L L. Review of the state-of-the-art researches on earthquake super-shear rupture [J]. Advances in Earth Science, 2011, 26(1): 39–47. DOI: 10.11867/j.issn.1001-8166.2011.01.0039.
    [39]
    XIA K, ROSAKIS A J, KANAMORI H. Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition [J]. Science, 2004, 303(5665): 1859–1861. DOI: 10.1126/science.1094022.
    [40]
    曹文卓, 李夕兵, 周子龙, 等. 高应力硬岩开挖扰动的能量耗散规律 [J]. 中南大学学报(自然科学版), 2014, 45(8): 2759–2767. DOI: CNKI:SUN:ZNGD.0.2014-08-029.

    CAO W Z, LI X B, ZHOU Z L, et al. Energy dissipation of high-stress hard rock with excavation disturbance [J]. Journal of Central South University (Science and Technology), 2014, 45(8): 2759–2767. DOI: CNKI:SUN:ZNGD.0.2014-08-029.
  • Relative Articles

    [1]GAO Guangfa. Meticulous analysis of one-dimensional elastic-plastic wave evolution in sandwich bar system (part Ⅰ): transmitted and reflected waves for typical loading waves[J]. Explosion And Shock Waves, 2024, 44(8): 081441. doi: 10.11883/bzycj-2023-0389
    [2]LI Diyuan, ZHOU Aohui, CHEN Yuda, MA Jinyin. Identification of stress thresholds for crack propagation of rock under quasi-static and dynamic loadings[J]. Explosion And Shock Waves, 2023, 43(10): 103102. doi: 10.11883/bzycj-2023-0065
    [3]CHENG Shufan, YE Yang, ZENG Yawu, GAO Rui. Failure law of surrounding rock under underground explosion based on a new damage-virtual tensile crack model[J]. Explosion And Shock Waves, 2022, 42(5): 055201. doi: 10.11883/bzycj-2021-0414
    [4]CUI Xinnan, WANG Xuguang, WANG Yinjun, CHEN Zhiyuan. External crack propagation of concrete surface under explosive loading[J]. Explosion And Shock Waves, 2020, 40(5): 052203. doi: 10.11883/bzycj-2019-0364
    [5]SUN Qiang, LI Xuedong, YAO Tengfei, GAO Chun. Experimental study on crack propagation of brittle materials based on DIC under explosive loading[J]. Explosion And Shock Waves, 2019, 39(10): 103102. doi: 10.11883/bzycj-2018-0308
    [6]WAN Duanying, ZHU Zheming, LIU Ruifeng, LIU Bang. Effect of two parallel cracks on main propagating cracks under blasting[J]. Explosion And Shock Waves, 2019, 39(8): 083105. doi: 10.11883/bzycj-2019-0008
    [7]YANG Renshu, XU Peng, CHEN Cheng. Interaction between blast stress waves and cracks[J]. Explosion And Shock Waves, 2019, 39(8): 081102. doi: 10.11883/bzycj-2018-0480
    [8]Yang Liyun, Ma Jiahui, Wang Xuedong, Zhang Wucheng, Zhang Lei. Experimental study on blasting crack initiation and propagation behaviorin compression stress field[J]. Explosion And Shock Waves, 2017, 37(2): 262-268. doi: 10.11883/1001-1455(2017)02-0262-07
    [9]Yang Renshu, Zuo Jinjing, Yang Liyun, Li Weiyu, Yu Xiantao. Dynamic and static crack interaction under action of explosive stress wave[J]. Explosion And Shock Waves, 2017, 37(6): 952-958. doi: 10.11883/1001-1455(2017)06-0952-07
    [10]Zhong Bobo, Li Hong, Zhang Yongbin. Numerical simulation of dynamic cracks propagation of rock under blasting loading[J]. Explosion And Shock Waves, 2016, 36(6): 825-831. doi: 10.11883/1001-1455(2016)06-0825-07
    [11]Yang Xin, Pu Chuanjin, Liao Tao, Xiao Dingjun. Effect of prefabricated crack with different fillings on blasting cracks propagation[J]. Explosion And Shock Waves, 2016, 36(3): 370-378. doi: 10.11883/1001-1455(2016)03-0370-09
    [12]XU Peng, CHENG Yuan-fang, ZHANG Xiao-chun, LI Lei, JIA Jiang-hong, LIU Xiao-lan. Fractalevaluationofexplosivefracturing simulationtestoncementsamples[J]. Explosion And Shock Waves, 2011, 31(2): 179-184. doi: 10.11883/1001-1455(2011)02-0179-06
    [13]YUE Zhong-wen, YANG Ren-shu, DONG Ju-cai, HAN Peng-fe. Dynamicpropagationbehaviorsofanobliqueedgecrack inmaterialunderblastloading[J]. Explosion And Shock Waves, 2011, 31(1): 75-80. doi: 10.11883/1001-1455(2011)01-0075-06
    [14]TANG Tie-gang, LI Qing-zhong, LIU Cang-li. Design analysis of expanding gap-ring test for studying evolvement of damage[J]. Explosion And Shock Waves, 2009, 29(6): 561-565. doi: 10.11883/1001-1455(2009)06-0561-05
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (149) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return