Citation: | XIAO Shanyu, SUN Xiaowang, QIN Weiwei, WANG Lihui, WANG Xianhui, LI Mingxing, FU Tiaoqi, ZHANG Qiang. On data-driven optimization design of protective structures for vehicles against explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0411 |
[1] |
吴凯. 基于不确定性的车辆底部防护结构优化设计 [D]. 南京: 南京理工大学, 2021: 1–14. DOI: 10.27241/d.cnki.gnjgu.2021.001134.
WU K, Uncertainty-based design optimization for vehicle bottom protection structures [D]. Nanjing: Nanjing University of Science and Technology, 2021: 1–14. DOI: 10.27241/d.cnki.gnjgu.2021.001134.
|
[2] |
陈学军, 杨学文, 张永珍. 地雷爆炸作用下装甲车辆底部防护结构优化仿真研究 [J]. 兵工学报, 2014, 35(S2): 353–357.
CHEN X J, YANG X W, ZHANG Y Z. A simulation study of structural optimization of armor vehicle bottom protection under the landmine explosion [J]. Acta Armamentarii, 2014, 35(S2): 353–357.
|
[3] |
ŚWIERCZEWSKI M, SŁAWIŃSKI G. Modelling and numerical analysis of explosion under the wheel of light armoured military vehicle [J]. Engineering Transactions, 2017, 65(4): 587–599. DOI: 10.24423/engtrans.793.2017.
|
[4] |
YANG Y, LIOU W W, SHENG J, et al. Shock wave impact simulation of a vehicle occupant using fluid/structure/dynamics interactions [J]. International Journal of Impact Engineering, 2013, 52: 11–22. DOI: 10.1016/j.ijimpeng.2012.09.002.
|
[5] |
方海涛. 车辆底部波纹抗爆炸防护结构防护机理及优化设计研究 [D]. 南京: 南京理工大学, 2019: 3–9. DOI: 10.27241/d.cnki.gnjgu.2019.000745.
FANG H T, Research on the protection mechanism and optimized design of corrugated anti-explosion protection structures at the vehicle undercarriage [D]. Nanjing: Nanjing University of Science and Technology, 2019: 3–9. DOI: 10.27241/d.cnki.gnjgu.2019.000745.
|
[6] |
CONG M, ZHOU Y B, ZHANG M, et al. Design and optimization of multi-V hulls of light armoured vehicles under blast loads [J]. Thin-Walled Structures, 2021, 168: 108311. DOI: 10.1016/j.tws.2021.108311.
|
[7] |
李明星, 王显会, 周云波, 等. 基于神经网络的车辆抗冲击防护组件优化 [J]. 爆炸与冲击, 2020, 40(2): 024203-1-024203-9. DOI: 10.11883/bzycj-2019-0055.
LI M X, WANG X H, ZHOU Y B, et al. Research on optimization of vehicle anti-shock protection components based on neural network[J]. Explosion and Shock Waves, 2020, 40(2): 024203-1-024203-9. DOI: 10.11883/bzycj-2019-0055
|
[8] |
徐克非, 王显会, 周云波, 等. 爆炸环境下车辆底部V型结构多参数优化研究 [J]. 兵器装备工程学报, 2020, 41(1): 28–32,37. DOI: 10.11809/bqzbgcxb2020.01.006.
XU K F, WANG X H, ZHOU Y B, et al. Multi-parameter optimization of underbody V-shaped structure under explosion load [J]. Journal of Ordnance Equipment Engineering, 2020, 41(1): 28–32,37. DOI: 10.11809/bqzbgcxb2020.01.006.
|
[9] |
XIAO B, ZHANG Y X, CHEN Y, et al. A semi-supervised learning detection method for vision-based monitoring of construction sites by integrating teacher-student networks and data augmentation [J]. Advanced Engineering Informatics, 2021, 50: 101372. DOI: 10.1016/j.aei.2021.101372.
|
[10] |
ZHOU B, DUAN H R, WU Q W, et al. Short-term prediction of wind power and its ramp events based on semi-supervised generative adversarial network [J]. International Journal of Electrical Power and Energy Systems, 2021, 125: 106411. DOI: 10.1016/j.ijepes.2020.106411.
|
[11] |
MU G Q, CHEN J. Developing a conditional variational autoencoder to guide spectral data augmentation for calibration modeling [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2501008. DOI: 10.1109/TIM.2022.3142060.
|
[12] |
ZHANG X, ZOU Y Y, LI S Y. Semi-supervised generative adversarial network with guaranteed safeness for industrial quality prediction [J]. Computers and Chemical Engineering, 2021, 153: 107418. DOI: 10.1016/j.compchemeng.2021.107418.
|
[13] |
NJIMA W, BAZZI A, CHAFII M. DNN-based indoor localization under limited dataset using GANs and semi-supervised learning [J]. IEEE Access, 2022, 10: 69896–69909. DOI: 10.1109/ACCESS.2022.3187837.
|
[14] |
马琳琪, 李校男, 晁涛, 等. 基于高斯数据增广的小样本数据无人机编队类型抗扰识别 [J]. 无人系统技术, 2023, 6(6): 42–50. DOI: 10.19942/j.issn.2096-5915.2023.06.59.
MA L Q, LI X N, CHAO T, et al. Anti-disturbance identification of UAV formation types based on Gaussian data augmentation with small sample data [J]. Unmanned Systems Technology, 2023, 6(6): 42–50. DOI: 10.19942/j.issn.2096-5915.2023.06.59.
|
[15] |
WU B Y, MENG D L, ZHAO H X. Semi-supervised learning for seismic impedance inversion using generative adversarial networks [J]. Remote Sensing, 2021, 13(5): 909. DOI: 10.3390/rs13050909.
|
[16] |
SHI X M, GU L J, LI X F, et al. Automated spectral transfer learning strategy for semi-supervised regression on Chlorophyll: a retrievals with Sentinel-2 imagery [J]. International Journal of Digital Earth, 2024, 17(1): 2313856. DOI: 10.1080/17538947.2024.2313856.
|
[17] |
LI Y L, LIAO Y L, SUN Z Y, et al. Semi-supervised contrastive regression for pharmaceutical processes [J]. Expert Systems with Applications, 2024, 238: 121974. DOI: 10.1016/j.eswa.2023.121974.
|
[18] |
LI Z, JIN H P, DONG S L, et al. Semi-supervised ensemble support vector regression based soft sensor for key quality variable estimation of nonlinear industrial processes with limited labeled data [J]. Chemical Engineering Research and Design, 2022, 179: 510–526. DOI: 10.1016/j.cherd.2022.01.026.
|
[19] |
ZHENG J H, LIU Y X, LIU Y, et al. Semi-supervised process data regression and application based on latent factor analysis model [J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2527511. DOI: 10.1109/TIM.2023.3317484.
|
[20] |
CALDERON-RAMIREZ S, OALA L, TORRENTS-BARRENA J, et al. Dataset similarity to assess semisupervised learning under distribution mismatch between the labeled and unlabeled datasets [J]. IEEE Transactions on Artificial Intelligence, 2023, 4(2): 282–291. DOI: 10.1109/TAI.2022.3168804.
|
[21] |
ZHENG Q C, WU M Y, SUN X W, et al. Combined Bayesian and error assessment-based model calibration method for vehicle under-belly blast with uncertainty [J]. Structural and Multidisciplinary Optimization, 2022, 65(5): 136. DOI: 10.1007/s00158-022-03226-9.
|
[22] |
SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning [J]. Journal of Big Data, 2019, 6(1): 60. DOI: 10.1186/s40537-019-0197-0.
|
[23] |
SHORTEN C, KHOSHGOFTAAR T M, FURHT B. Text data augmentation for deep learning [J]. Journal of Big Data, 2021, 8(1): 101. DOI: 10.1186/s40537-021-00492-0.
|
[24] |
NANNI L, MAGUOLO G, PACI M. Data augmentation approaches for improving animal audio classification [J]. Ecological Informatics, 2020, 57: 101084. DOI: 10.1016/j.ecoinf.2020.101084.
|
[25] |
王宁. 生成对抗网络地震数据增强方法研究 [D]. 北京: 中国石油大学(北京), 2021: 47–59. DOI: 10.27643/d.cnki.gsybu.2021.000536.
WANG N, Research on interpolation method of seismic data based on generative adversarial network [D]. Beijing: China University of Petroleum (Beijing), 2021: 47–59. DOI: 10.27643/d.cnki.gsybu.2021.000536.
|
[26] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks [J]. Communications of the ACM, 2020, 63(11): 139–144. DOI: 10.1145/3422622.
|
[27] |
ZHOU Z H, LI M. Semi-supervised regression with co-training [C]//Proceedings of the 19th International Joint Conference on Artificial Intelligence. Edinburgh: Morgan Kaufmann Publishers Inc. , 2005: 908–913.
|
[28] |
秦世强, 杨睿, 苏晟. 基于自训练半监督神经网络的结构损伤识别 [J]. 地震工程与工程振动, 2024, 44(2): 38–49. DOI: 10.13197/j.eeed.2024.0205.
QIN S Q, YANG R, SU M. Structural damage identification based on self-training semi-supervised neural network [J]. Earthquake Engineering and Engineering Dynamics, 2024, 44(2): 38–49. DOI: 10.13197/j.eeed.2024.0205.
|
[29] |
丁世飞, 孙玉婷, 梁志贞, 等. 弱监督场景下的支持向量机算法综述 [J]. 计算机学报, 2024, 47(5): 987–1009. DOI: 10.11897/SP.J.1016.2024.00987.
DING S F, SUN Y T, LIANG Z Z, et al. Survey on support vector machine algorithms in weakly supervised scenarios [J]. Chinese Journal of Computers, 2024, 47(5): 987–1009. DOI: 10.11897/SP.J.1016.2024.00987.
|
[30] |
MEY A, LOOG M. Improved generalization in semi-supervised learning: a survey of theoretical results [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4747–4767. DOI: 10.1109/TPAMI.2022.3198175.
|
[31] |
刘建伟, 刘媛, 罗雄麟. 半监督学习方法 [J]. 计算机学报, 2015, 38(8): 1592–1617. DOI: 10.11897/SP.J.1016.2015.01592.
LIU J W, LIU Y, LUO X L. Semi-supervised learning methods [J]. Chinese Journal of Computers, 2015, 38(8): 1592–1617. DOI: 10.11897/SP.J.1016.2015.01592.
|
[32] |
STORN R, PRICE K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces [J]. Journal of Global Optimization, 1997, 11(4): 341–359. DOI: 10.1023/A:1008202821328.
|
[33] |
SLOWIK A, KWASNICKA H. Evolutionary algorithms and their applications to engineering problems [J]. Neural Computing and Applications, 2020, 32(16): 12363–12379. DOI: 10.1007/s00521-020-04832-8.
|
[34] |
魏然, 王显会, 周云波, 等. 帕累托最优在车辆底部防护结构设计中的应用研究 [J]. 兵工学报, 2015, 36(6): 1061–1066. DOI: 10.3969/j.issn.1000-1093.2015.06.014.
WEI R, WANG X, ZHOU Y, et al. Application of pareto optimality in protective structure design of vehicle underbody [J]. Acta Armamentarii, 2015, 36(6): 1061–1066. DOI: 10.3969/j.issn.1000-1093.2015.06.014.
|
[35] |
朱孙科, 陈历, 倪颖倩, 等. 基于NSGA-Ⅱ的复合材料防撞梁碰撞损伤多目标优化 [J]. 塑性工程学报, 2024, 31(2): 173–181. DOI: 10.3969/j.issn.1007-2012.2024.02.022.
ZHU J K, CHEN L, NI Y Q, et al. Multi-objective optimization of collision damage of reinforced plastic anti-collision beams based on NSGA-Ⅱ [J]. Journal of Plasticity Engineering, 2024, 31(2): 173–181. DOI: 10.3969/j.issn.1007-2012.2024.02.022.
|