Citation: | TAO Ming, CAO Zheng, ZHAO Rui, LIU Yulong, LI Xibing. Influence of filled joints with different inclination angles on rock blasting fragmentation[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0414 |
[1] |
LIU T T, DING L Y, ZHENG Y, et al. Calculating the attenuation of stress waves passing through an in situ stressed joint using a double nonlinear model [J]. Waves in Random and Complex Media, 2024, 34(6): 5056–5076. DOI: 10.1080/17455030.2021.2003477.
|
[2] |
HUANG X L, QI S W, XIA K W, et al. Particle crushing of a filled fracture during compression and its effect on stress wave propagation [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(7): 5559–5587. DOI: 10.1029/2018JB016001.
|
[3] |
WANG Z L, KONIETZKY H, SHEN R F. Coupled finite element and discrete element method for underground blast in faulted rock masses [J]. Soil Dynamics and Earthquake Engineering, 2009, 29(6): 939–945. DOI: 10.1016/j.soildyn.2008.11.002.
|
[4] |
DENG X F, ZHU J B, CHEN S G, et al. Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses [J]. Tunnelling and Underground Space Technology, 2014, 43: 88–100. DOI: 10.1016/j.tust.2014.04.004.
|
[5] |
DU J H, HUANG X L, YANG G X, et al. UDEC modelling on dynamic response of rock masses with joint stiffness weakening attributed to particle crushing of granular fillings [J]. Rock Mechanics and Rock Engineering, 2023, 56(3): 1823–1841. DOI: 10.1007/s00603-022-03181-3.
|
[6] |
LI X F, LI H B, LI J C, et al. Research on transient wave propagation across nonlinear joints filled with granular materials [J]. Rock Mechanics and Rock Engineering, 2018, 51(8): 2373–2393. DOI: 10.1007/s00603-018-1471-8.
|
[7] |
HAN Z Y, LI D Y, ZHOU T, et al. Experimental study of stress wave propagation and energy characteristics across rock specimens containing cemented mortar joint with various thicknesses [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 131: 104352. DOI: 10.1016/j.ijrmms.2020.104352.
|
[8] |
CHAI L Z, CHAI S B, LI P, et al. Analysis of P-wave propagation in filled jointed rock mass with viscoelastic properties [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9(1): 102. DOI: 10.1007/s40948-023-00642-z.
|
[9] |
LI J C, MA G W. Analysis of blast wave interaction with a rock joint [J]. Rock Mechanics and Rock Engineering, 2010, 43(6): 777–787. DOI: 10.1007/s00603-009-0062-0.
|
[10] |
LI J C, RONG L F, LI H B, et al. An SHPB test study on stress wave energy attenuation in jointed rock masses [J]. Rock Mechanics and Rock Engineering, 2019, 52(2): 403–420. DOI: 10.1007/s00603-018-1586-y.
|
[11] |
LI J C, LI N N, LI H B, et al. AN SHPB test study on wave propagation across rock masses with different contact area ratios of joint [J]. International Journal of Impact Engineering, 2017, 105: 109–116. DOI: 10.1016/j.ijimpeng.2016.12.011.
|
[12] |
JIANG X D, XUE Y G, KONG F M, et al. Dynamic responses and damage mechanism of rock with discontinuity subjected to confining stresses and blasting loads [J]. International Journal of Impact Engineering, 2023, 172: 104404. DOI: 10.1016/j.ijimpeng.2022.104404.
|
[13] |
YANG R S, DING C X, YANG L Y, et al. Model experiment on dynamic behavior of jointed rock mass under blasting at high-stress conditions [J]. Tunnelling and Underground Space Technology, 2018, 74: 145–152. DOI: 10.1016/j.tust.2018.01.017.
|
[14] |
YU R G, ZHANG Z H, GAO W L, et al. Numerical simulation of rock mass blasting vibration using particle flow code and particle expansion loading algorithm [J]. Simulation Modelling Practice and Theory, 2023, 122: 102686. DOI: 10.1016/j.simpat.2022.102686.
|
[15] |
ZHU F, ZHAO J D. Peridynamic modelling of blasting induced rock fractures [J]. Journal of the Mechanics and Physics of Solids, 2021, 153: 104469. DOI: 10.1016/j.jmps.2021.104469.
|
[16] |
KARMAKAR S, SHAW A. Response of R. C. plates under blast loading using FEM-SPH coupled method [J]. Engineering Failure Analysis, 2021, 125: 105409. DOI: 10.1016/j.engfailanal.2021.105409.
|
[17] |
GHAREHDASH S, BARZEGAR M, PALYMSKIY I B, et al. Blast induced fracture modelling using smoothed particle hydrodynamics [J]. International Journal of Impact Engineering, 2020, 135: 103235. DOI: 10.1016/j.ijimpeng.2019.02.001.
|
[18] |
HAO H, WU Y K, MA G W, et al. Characteristics of surface ground motions induced by blasts in jointed rock mass [J]. Soil Dynamics and Earthquake Engineering, 2001, 21(2): 85–98. DOI: 10.1016/S0267-7261(00)00104-4.
|
[19] |
JHANWAR J C, JETHWA J L, REDDY A H. Influence of air-deck blasting on fragmentation in jointed rocks in an open-pit manganese mine [J]. Engineering Geology, 2000, 57(1/2): 13–29. DOI: 10.1016/S0013-7952(99)00125-8.
|
[20] |
XIE X K, LI J C, ZHENG Y L. Experimental study on dynamic mechanical and failure behavior of a jointed rock mass [J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 168: 105415. DOI: 10.1016/j.ijrmms.2023.105415.
|
[21] |
WANG Z L, KONIETZKY H. Modelling of blast-induced fractures in jointed rock masses [J]. Engineering Fracture Mechanics, 2009, 76(12): 1945–1955. DOI: 10.1016/j.engfracmech.2009.05.004.
|
[22] |
ZHU J B. Theoretical and numerical analyses of wave propagation in jointed rock masses [D]. 2011. DOI: 10.5075/epfl-thesis-5130.
|
[23] |
郭文章, 王树任, 陈寿峰. 岩体中的节理对爆破作用的影响 [J]. 爆炸与冲击, 1999, 19(2): 188–192. DOI: 10.11883/1001-1455(1999)02-0188-5.
GUO W Z, WANG S R, CHEN S F. Effect of joint on rock mass under blasting [J]. Explosion and Shock Waves, 1999, 19(2): 188–192. DOI: 10.11883/1001-1455(1999)02-0188-5.
|
[24] |
宋彦琦, 李向上, 刘济琛, 等. 节理充填物厚度对运动裂纹扩展的影响 [J]. 爆炸与冲击, 2020, 40(8): 083102. DOI: 10.11883/bzycj-2019-0358.
SONG Y Q, LI X S, LIU J C, et al. Effects of joint filling thickness on crack propagation behaviors [J]. Explosion and Shock Waves, 2020, 40(8): 083102. DOI: 10.11883/bzycj-2019-0358.
|
[25] |
金李, 卢文波, 陈明, 等. 节理岩体的爆破松动机理 [J]. 爆炸与冲击, 2009, 29(5): 474–480. DOI: 10.11883/1001-1455(2009)05-0474-07.
JIN L, LU W B, CHEN M, et al. Mechanism of jointed rock loosing under blasting load [J]. Explosion and Shock Waves, 2009, 29(5): 474–480. DOI: 10.11883/1001-1455(2009)05-0474-07.
|
[26] |
ZHOU H X, GAO Q D, FAN Y, et al. Analysis of causes of vibration differences induced by different kinds of blastholes based on the interpretation of blasting parameters: a case study in dam foundation excavation [J]. Rock Mechanics and Rock Engineering, 2023, 56(10): 7237–7254. DOI: 10.1007/S00603-023-03457-2.
|
[27] |
ZUO J J, YANG R S, GONG M, et al. Effect of different filling media between explosive and blast-hole wall on rock blasting [J]. Rock Mechanics and Rock Engineering, 2023, 56(8): 5705–5717. DOI: 10.1007/s00603-023-03366-4.
|
[28] |
HAJIBAGHERPOUR A R, MANSOURI H, BAHAADDINI M. Numerical modeling of the fractured zones around a blasthole [J]. Computers and Geotechnics, 2020, 123: 103535. DOI: 10.1016/j.compgeo.2020.103535.
|
[29] |
YI C P, JOHANSSON D, GREBERG J. Effects of in-situ stresses on the fracturing of rock by blasting [J]. Computers and Geotechnics, 2018, 104: 321–330. DOI: 10.1016/j.compgeo.2017.12.004.
|
[30] |
YI C P, JOHANSSON D, NYBERG U, et al. Stress wave interaction between two adjacent blast holes [J]. Rock Mechanics and Rock Engineering, 2016, 49(5): 1803–1812. DOI: 10.1007/s00603-015-0876-x.
|
[31] |
LI X B, LI C J, CAO W Z, et al. Dynamic stress concentration and energy evolution of deep-buried tunnels under blasting loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 104: 131–146. DOI: 10.1016/j.ijrmms.2018.02.018.
|
[32] |
陶明, 向恭梁, 赵瑞. 深埋引水隧洞对应力波的散射与动应力集中 [J]. 应用力学学报, 2022, 39(5): 859–868. DOI: 10.11776/j.issn.1000-4939.2022.05.006.
TAO M, XIANG G L, ZHAO R. Scattering of stress wave and dynamic stress concentration for deep diversion tunnel [J]. Chinese Journal of Applied Mechanics, 2022, 39(5): 859–868. DOI: 10.11776/j.issn.1000-4939.2022.05.006.
|
[33] |
YAHYAOUI S, HAFSAOUI A, AISSI A, et al. Relationship of the discontinuities and the rock blasting results [J]. Journal of Geology, Geography and Geoecology, 2018, 26(1): 208–218. DOI: 10.15421/111821.
|
[34] |
WANG W H, HAO H, LI X B, et al. Effects of a single open joint on energy transmission coefficients of stress waves with different waveforms [J]. Rock Mechanics and Rock Engineering, 2015, 48(5): 2157–2166. DOI: 10.1007/s00603-014-0684-8.
|
[35] |
陶明, 姚靖, 李夕兵. 平面P波入射具有不完美界面圆形夹塞的动态响应特性 [J]. 爆破, 2022, 39(3): 25–32,63. DOI: 10.3963/j.issn.1001-487X.2022.03.004.
TAO M, YAO J, LI X B. Dynamic response characteristics of circular inclusion with imperfect interface under plane P-wave incident [J]. Blasting, 2022, 39(3): 25–32,63. DOI: 10.3963/j.issn.1001-487X.2022.03.004.
|
[36] |
丁三毛. 考虑地应力影响的深埋圆形管道在爆破P波作用下的动力响应 [J]. 爆破, 2023, 40(3): 177–183,198. DOI: 10.3963/j.issn.1001-487X.2023.03.024.
DING S M. Dynamic response of deep buried circular pipeline subjected to blasting p-wave considering influence of in-situ stress [J]. Blasting, 2023, 40(3): 177–183,198. DOI: 10.3963/j.issn.1001-487X.2023.03.024.
|
[37] |
LI X D, LIU K W, SHA Y Y, et al. Numerical investigation on rock fragmentation under decoupled charge blasting [J]. Computers and Geotechnics, 2023, 157: 105312. DOI: 10.1016/j.compgeo.2023.105312.
|
[38] |
HONG Z X, TAO M, LI X D, et al. Experimental study on the influences of charging structure with various filling mediums on rock blasting performances [J]. Powder Technology, 2023, 429: 118925. DOI: 10.1016/j.powtec.2023.118925.
|
[39] |
YANG J C, LIU Z X, LIU K W, et al. Study on the blasting damage of prestressed rock-like specimens with different coupling mediums [J]. International Journal of Impact Engineering, 2023, 181: 104758. DOI: 10.1016/j.ijimpeng.2023.104758.
|
[40] |
TAO M, LI Z W, CAO W Z, et al. Stress redistribution of dynamic loading incident with arbitrary waveform through a circular cavity [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(6): 1279–1299. DOI: 10.1002/nag.2897.
|
[41] |
SCHWER L E, JAVIER MALVAR L. Simplified concrete modeling with *mat_concrete_damage_rel3 [R]. Nagoya: JRI LS-Dyna User Week, 2005: 49-60.
|
[42] |
KRISTOFFERSEN M, PETTERSEN J E, AUNE V, et al. Experimental and numerical studies on the structural response of normal strength concrete slabs subjected to blast loading [J]. Engineering Structures, 2018, 174: 242–255. DOI: 10.1016/j.engstruct.2018.07.022.
|
[43] |
REN L, YU X M, ZHENG M X, et al. Evaluation of typical dynamic damage models used for UHPC based on SHPB technology [J]. Engineering Fracture Mechanics, 2022, 269: 108562. DOI: 10.1016/j.engfracmech.2022.108562.
|
[44] |
MENG Q F, WU C Q, SU Y, et al. Experimental and numerical investigation of blast resistant capacity of high performance geopolymer concrete panels [J]. Composites Part B: Engineering, 2019, 171: 9–19. DOI: 10.1016/j.compositesb.2019.04.010.
|
[45] |
LIU K W, LI X D, HAO H, et al. Study on the raising technique using one blast based on the combination of long-hole presplitting and vertical crater retreat multiple-deck shots [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 113: 41–58. DOI: 10.1016/j.ijrmms.2018.11.012.
|
[46] |
ZHAO R, TAO M, WU C Q, et al. Study on size and load rate effect of dynamic fragmentation and mechanical properties of marble sphere [J]. Engineering Failure Analysis, 2022, 142: 106814. DOI: 10.1016/j.engfailanal.2022.106814.
|
[47] |
AZIZABADI H R M, MANSOURI H, FOUCHÉ O. Coupling of two methods, waveform superposition and numerical, to model blast vibration effect on slope stability in jointed rock masses [J]. Computers and Geotechnics, 2014, 61: 42–49. DOI: 10.1016/j.compgeo.2014.04.008.
|
[48] |
HEALY D, RIZZO R E, CORNWELL D G, et al. FracPaQ: a MATLAB™ toolbox for the quantification of fracture patterns [J]. Journal of Structural Geology, 2017, 95: 1–16. DOI: 10.1016/j.jsg.2016.12.003.
|
[49] |
ZHAO H T, TAO M, LI X B, et al. Estimation of spalling strength of sandstone under different pre-confining pressure by experiment and numerical simulation [J]. International Journal of Impact Engineering, 2019, 133: 103359. DOI: 10.1016/j.ijimpeng.2019.103359.
|
[50] |
FAN L F, JIA L, WANG M. Evaluation of the displacement discontinuity method on wave propagation through a thickly jointed rock mass [J/OL]. Waves in Random and Complex Media, 2023: 1–14. DOI: 10.1080/17455030.2023.2169388.
|
[51] |
YANG H, DUAN H F, ZHU J B. Experimental study on the role of clay mineral and water saturation in ultrasonic P-wave behaviours across individual filled rock joints [J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 168: 105393. DOI: 10.1016/j.ijrmms.2023.105393.
|
[52] |
WANG R, HU Z P, ZHANG D, et al. Propagation of the stress wave through the filled joint with linear viscoelastic deformation behavior using time-domain recursive method [J]. Rock Mechanics and Rock Engineering, 2017, 50(12): 3197–3207. DOI: 10.1007/s00603-017-1301-4.
|
[53] |
BANDIS S C, LUMSDEN A C, BARTON N R. Fundamentals of rock joint deformation [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983, 20(6): 249–268. DOI: 10.1016/0148-9062(83)90595-8.
|