• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Volume 45 Issue 6
Jun.  2025
Turn off MathJax
Article Contents
MA Sizhou, JIANG Haiming, ZHOU Chaolan, WANG Mingyang, LIU Kewei. Investigation on cracking behavior and influencing factors of jointed rock masses under the coupling effect of confining pressure and blasting[J]. Explosion And Shock Waves, 2025, 45(6): 061001. doi: 10.11883/bzycj-2024-0424
Citation: MA Sizhou, JIANG Haiming, ZHOU Chaolan, WANG Mingyang, LIU Kewei. Investigation on cracking behavior and influencing factors of jointed rock masses under the coupling effect of confining pressure and blasting[J]. Explosion And Shock Waves, 2025, 45(6): 061001. doi: 10.11883/bzycj-2024-0424

Investigation on cracking behavior and influencing factors of jointed rock masses under the coupling effect of confining pressure and blasting

doi: 10.11883/bzycj-2024-0424
  • Received Date: 2024-10-30
  • Rev Recd Date: 2025-01-18
  • Available Online: 2025-01-21
  • Publish Date: 2025-06-10
  • Propagation features of blast-induced stress waves undergo substantial alterations as they traverse heterogeneous interfaces. In rock engineering, the prevalence of discontinuous structural planes, such as joints and fissures, becomes increasingly pronounced with increasing burial depth. To gain a comprehensive insight into the dynamic response and damage mechanism, an explicit dynamics numerical method incorporating the ALE algorithm and fluid-solid coupling technology was adopted, which allows for precise simulation of the fracture process within jointed rock mass under the combined effects of confining pressure and blasting load. Based on the time-domain recurrence theory, the transmission and reflection coefficients of the stress wave were calculated, and the propagation process and features of the stress wave were then analyzed by the explosion photoelasticity test using an epoxy resin plate. Additionally, the Riedel-Hiermaier-Thoma (RHT) damage model was used to investigate the influence of different joint angles and confining pressures on cracking behavior. Furthermore, the cracks were quantitatively assessed using the FracPaQ program. Finally, the damage mechanism of the jointed rock mass was revealed by analyzing the principal stress distribution and displacement change as well as the dynamic stress intensity factors (DSIFs) of the joint tip. The results show that both the joint and the anisotropic pressure have a guiding effect on crack extension, and the effect of the anisotropic pressure will be weakened by the presence of the joint. For the anisotropic pressure condition, the stress wave transmission and reflection coefficients tended to decrease and increase, respectively, with increasing pressure in the horizontal direction. From the change rule of normal and tangential displacement on both sides of the joint surface, it is found that shear stress is the main cause of tip-wing crack expansion. An analysis of the DSIFs reveals that tensile cracks predominantly contribute to damage at the joint tip during the initial phase of blasting, with shear cracks becoming the dominant form of damage in the later stages.
  • loading
  • [1]
    单仁亮, 赵岩, 王海龙, 等. 下穿铁路隧道爆破振动衰减规律研究 [J]. 爆炸与冲击, 2022, 42(8): 085201. DOI: 11883/bzycj-2021-0324. DOI: 10.11883/bzycj-2021-0324.

    SHAN R L, ZHAO Y, WANG H L, et al. Attenuation of blasting vibration in a railway tunnel [J]. Explosion and Shock Waves, 2022, 42(8): 085201. DOI: 11883/bzycj-2021-0324. DOI: 10.11883/bzycj-2021-0324.
    [2]
    LU W B, CHEN M, GENG X, et al. A study of excavation sequence and contour blasting method for underground powerhouses of hydropower stations [J]. Tunnelling and Underground Space Technology, 2012, 29: 31–39. DOI: 10.1016/j.tust.2011.12.008.
    [3]
    李夕兵, 姚金蕊, 宫凤强. 硬岩金属矿山深部开采中的动力学问题 [J]. 中国有色金属学报, 2011, 21(10): 2551–2563. DOI: 10.19476/j.ysxb.1004.0609.2011.10.022.

    LI X B, YAO J R, GONG F Q. Dynamic problems in deep exploitation of hard rock metal mines [J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2551–2563. DOI: 10.19476/j.ysxb.1004.0609.2011.10.022.
    [4]
    董千. 不同地应力下节理岩体中爆炸应力波传播与衰减规律研究 [D]. 武汉: 武汉理工大学, 2018.

    DONG Q. Study on propagation and attenuation law of blasting stress wave in jointed rock mass under different in-situ stresses [D]. Wuhan: Wuhan University of Technology, 2018.
    [5]
    王明洋, 钱七虎. 爆炸应力波通过节理裂隙带的衰减规律 [J]. 岩土工程学报, 1995, 17(2): 42–46.

    WANG M Y, QIAN Q H. Attenuation law of explosive wave propagation in cracks [J]. Chinese Journal of Geotechnical Engineering, 1995, 17(2): 42–46.
    [6]
    MINDLIN R D. Waves and vibrations in isotropic elastic plates [M]//GOODIER J N, HOFF N J. Structural Mechanics. New York: Pergamon, 1960.
    [7]
    SCHOENBERG M. Elastic wave behavior across linear slip interfaces [J]. The Journal of the Acoustical Society of America, 1980, 68(5): 1516–1521. DOI: 10.1121/1.385077.
    [8]
    ZHAO J, CAI J G. Transmission of elastic P-waves across single fractures with a nonlinear normal deformational behavior [J]. Rock Mechanics and Rock Engineering, 2001, 34(1): 3–22. DOI: 10.1007/s006030170023.
    [9]
    李建春, 范立峰, 李郑梁. 岩体中应力波传播规律研究方法进展 [J]. 应用力学学报, 2022, 39(5): 845–858. DOI: 10.11776/j.issn.1000-4939.2022.05.005.

    LI J C, FAN L F, LI Z L. Progress of methods for wave propagation across rock masses [J]. Chinese Journal of Applied Mechanics, 2022, 39(5): 845–858. DOI: 10.11776/j.issn.1000-4939.2022.05.005.
    [10]
    杨仁树, 丁晨曦, 杨立云, 等. 节理对爆生裂纹扩展影响的试验研究 [J]. 振动与冲击, 2017, 36(10): 26–30, 44. DOI: 10.13465/j.cnki.jvs.2017.10.005.

    YANG R S, DING C X, YANG L Y, et al. Experimental study on the effects of joints on the blasting induced cracks propagation [J]. Journal of Vibration and Shock, 2017, 36(10): 26–30, 44. DOI: 10.13465/j.cnki.jvs.2017.10.005.
    [11]
    NICHOLLS H R, DUVALL W I. Presplitting rock in the presence of a static stress field [R]. Washington DC: U. S. Department of the Interior, Bureau of Mines, 1966.
    [12]
    KUTTER H K, FAIRHURST C. On the fracture process in blasting [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1971, 8(3): 181–202. DOI: 10.1016/0148-9062(71)90018-0.
    [13]
    ZHU Z M, XIE H P, MOHANTY B. Numerical investigation of blasting-induced damage in cylindrical rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2): 111–121. DOI: 10.1016/j.ijrmms.2007.04.012.
    [14]
    YI C P, JOHANSSON D, GREBERG J. Effects of in-situ stresses on the fracturing of rock by blasting [J]. Computers and Geotechnics, 2018, 104: 321–330. DOI: 10.1016/j.compgeo.2017.12.004.
    [15]
    XIE L X, LU W B, ZHANG Q B, et al. Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses [J]. Tunnelling and Underground Space Technology, 2017, 66: 19–33. DOI: 10.1016/j.tust.2017.03.009.
    [16]
    MOBARAKI B, VAGHEFI M. Numerical study of the depth and cross-sectional shape of tunnel under surface explosion [J]. Tunnelling and Underground Space Technology, 2015, 47: 114–122. DOI: 10.1016/j.tust.2015.01.003.
    [17]
    马泗洲, 刘科伟, 杨家彩, 等. 初始应力下岩体爆破损伤特性及破裂机理 [J]. 爆炸与冲击, 2023, 43(10): 105201. DOI: 10.11883/bzycj-2023-0151.

    MA S Z, LIU K W, YANG J C, et al. Blast-induced damage characteristics and fracture mechanism of rock mass under initial stress [J]. Explosion and Shock Waves, 2023, 43(10): 105201. DOI: 10.11883/bzycj-2023-0151.
    [18]
    YANG J C, LIU K W, LI X D, et al. Stress initialization methods for dynamic numerical simulation of rock mass with high in-situ stress [J]. Journal of Central South University, 2020, 27(10): 3149–3162. DOI: 10.1007/s11771-020-4535-3.
    [19]
    马泗洲, 刘科伟, 杨家彩, 等. 不耦合装药下岩石爆破块体尺寸的分布特征 [J]. 爆炸与冲击, 2024, 44(4): 045201. DOI: 10.11883/bzycj-2023-0358.

    MA S Z, LIU K W, YANG J C, et al. Size distribution characteristics of blast-induced rock fragmentation under decoupled charge structures [J]. Explosion and Shock Waves, 2024, 44(4): 045201. DOI: 10.11883/bzycj-2023-0358.
    [20]
    ZHAO J, ZHAO X B, CAI J G. A further study of P-wave attenuation across parallel fractures with linear deformational behaviour [J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(5): 776–788. DOI: 10.1016/j.ijrmms.2005.12.007.
    [21]
    LI J C. Wave propagation across non-linear rock joints based on time-domain recursive method [J]. Geophysical Journal International, 2013, 193(2): 970–985. DOI: 10.1093/gji/ggt020.
    [22]
    周文海, 胡才智, 包娟, 等. 含节理岩体爆破过程中应力波传播与裂纹扩展的数值研究 [J]. 力学学报, 2022, 54(9): 2501–2512. DOI: 10.6052/0459-1879-22-237.

    ZHOU W H, HU C Z, BAO J, et al. Numerical study on crack propagation and stress wave propagation during blasting of jointed rock mass [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2501–2512. DOI: 10.6052/0459-1879-22-237.
    [23]
    CHEN C, YANG R S, XU P, et al. Experimental study on the interaction between oblique incident blast stress wave and static crack by dynamic photoelasticity [J]. Optics and Lasers in Engineering, 2022, 148: 106764. DOI: 10.1016/j.optlaseng.2021.106764.
    [24]
    JAYASINGHE L B, SHANG J L, ZHAO Z Y, et al. Numerical investigation into the blasting-induced damage characteristics of rocks considering the role of in-situ stresses and discontinuity persistence [J]. Computers and Geotechnics, 2019, 116: 103207. DOI: 10.1016/j.compgeo.2019.103207.
    [25]
    HEALY D, RIZZO R E, CORNWELL D G, et al. FracPaQ: a MATLAB™ toolbox for the quantification of fracture patterns [J]. Journal of Structural Geology, 2017, 95: 1–16. DOI: 10.1016/j.jsg.2016.12.003.
    [26]
    XIE Q M, SHI D D, CHEN X D, et al. Investigation on dynamic splitting mechanical properties of weakly cemented siltstone based on digital image correlation method and FracPaQ algorithm [J]. Geoenergy Science and Engineering, 2024, 243: 213310. DOI: 10.1016/j.geoen.2024.213310.
    [27]
    高维廷, 朱哲明, 朱伟, 等. 动荷载下岩石裂纹动态扩展行为实验研究综述 [J]. 爆炸与冲击, 2023, 43(8): 081101. DOI: 10.11883/bzycj-2022-0526.

    GAO W T, ZHU Z M, ZHU W, et al. Experimental studies on crack propagation behaviors of rock materials under dynamic loads: a review [J]. Explosion and Shock Waves, 2023, 43(8): 081101. DOI: 10.11883/bzycj-2022-0526.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(5)

    Article Metrics

    Article views (292) PDF downloads(368) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return