| Citation: | WANG Teng, ZHENG Guang, ZHENG Yuxuan, ZHOU Fenghua. Simulation analysis and experimental verification of dynamic mechanical properties of white sandstone based on different constitutive models[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0436 |
| [1] |
RIEDEL W, KAWAI N, KONDO K I. Numerical assessment for impact strength measurements in concrete materials [J]. International Journal of Impact Engineering, 2009, 36(2): 283–293. DOI: 10.1016/j.ijimpeng.2007.12.012.
|
| [2] |
WU G L, WANG H. Nonlinear correction of elastic section in HJC constitutive model [J]. International Journal of Impact Engineering, 2024, 189: 104955. DOI: 10.1016/j.ijimpeng.2024.104955.
|
| [3] |
LI X H, ZHU Z M, WANG M, et al. Numerical study on the behavior of blasting in deep rock masses [J]. Tunnelling and Underground Space Technology, 2021, 113: 103968. DOI: 10.1016/j.tust.2021.103968.
|
| [4] |
WANG Z L, WANG H C, WANG J G, et al. Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks [J]. Computers and Geotechnics, 2021, 135: 104172. DOI: 10.1016/j.compgeo.2021.104172.
|
| [5] |
LI X D, LIU K W, SHA Y Y, et al. Experimental and numerical investigation on rock fracturing in tunnel contour blasting under initial stress [J]. International Journal of Impact Engineering, 2024, 185: 104844. DOI: 10.1016/j.ijimpeng.2023.104844.
|
| [6] |
LIU J, ZHANG J C. A modified HJC model for geological materials subjected to blasting loadings [J]. Structures, 2023, 58: 105483. DOI: 10.1016/j.istruc.2023.105483.
|
| [7] |
宋彦臣, 刘学鹏, 王君杰, 等. 混凝土帽盖模型参数标定及桥梁冲击损伤模拟应用 [J]. 中国公路学报, 2024, 37(5): 151–174. DOI: 10.19721/j.cnki.1001-7372.2024.05.009.
SONG Y C, LIU X P, WANG J J, et al. Calibration of parameters for the concrete cap model and its applications in simulating impact-induced damage in bridges [J]. China Journal of Highway and Transport, 2024, 37(5): 151–174. DOI: 10.19721/j.cnki.1001-7372.2024.05.009.
|
| [8] |
YIN X, LI Q H, XU X Y, et al. Investigation of continuous surface cap model (CSCM) for numerical simulation of strain-hardening fibre-reinforced cementitious composites against low-velocity impacts [J]. Composite Structures, 2023, 304: 116424. DOI: 10.1016/j.compstruct.2022.116424.
|
| [9] |
DENG Z, ZHU Z M, ZHOU L, et al. Effect of dynamic loading orientation on fracture properties of surrounding rocks in twin tunnels [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2024, 16(2): 393–409. DOI: 10.1016/j.jrmge.2023.06.017.
|
| [10] |
匡志平, 袁训康. RHT混凝土本构模型强度参数分析与模拟 [J]. 力学季刊, 2012, 33(1): 158–163. DOI: 10.15959/j.cnki.0254-0053.2012.01.016.
KUANG Z P, YUAN X K. The analysis and simulation for the strength parameters of RHT concrete model [J]. Chinese Quarterly of Mechanics, 2012, 33(1): 158–163. DOI: 10.15959/j.cnki.0254-0053.2012.01.016.
|
| [11] |
ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411–1478. DOI: 10.1007/s00603-013-0463-y.
|
| [12] |
XIE L X, LU W B, ZHANG Q B, et al. Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses [J]. Tunnelling and Underground Space Technology, 2017, 66: 19–33. DOI: 10.1016/j.tust.2017.03.009.
|
| [13] |
BORRVALL T, RIEDEL W. The RHT concrete model in LS-DYNA [C]//Proceedings of the 8th European LS-DYNA User Conference. Strasbourg, 2011: 23–24.
|
| [14] |
MEYERS M A. Dynamic behavior of materials [M]. New York: John Wiley & Sons, 1994.
|
| [15] |
LSTC. LS-DYNA® keyword user’s manual Volume Ⅱ: material models: LS-DYNA R7.1 [R]. Livermore: LSTC Co. , 2007.
|
| [16] |
HOLMQUIST T J, JOHNSON G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures [J]. Journal of Applied Mechanics, 2011, 78(5): 051003. DOI: 10.1115/1.4004326.
|
| [17] |
SCHWER L E, MURRAY Y D. A three‐invariant smooth cap model with mixed hardening [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1994, 18(10): 657–688. DOI: 10.1002/nag.1610181002.
|
| [18] |
MURRAY Y D, LEWIS B A. Numerical simulation of damage in concrete: DNA-TR-94-190 [R]. APTEK, Inc. , Contract DNA, 1995: 1–91.
|
| [19] |
DUVAUT G, LIONS J L. Les inéquations en mécanique et en physique [M]. Paris: Dunod, 1972.
|
| [20] |
YANG J C, LIU K W, LI X D, et al. Stress initialization methods for dynamic numerical simulation of rock mass with high in-situ stress [J]. Journal of Central South University, 2020, 27(10): 3149–3162. DOI: 10.1007/s11771-020-4535-3.
|
| [21] |
吕绍品, 郑光, 郑宇轩, 等. 静水压下白砂岩的动态力学性能研究 [J]. 硅酸盐通报, 2024, 43(2): 543–554. DOI: 10.16552/j.cnki.issn1001-1625.2024.02.019.
LÜ S P, ZHENG G, ZHENG Y X, et al. Dynamic mechanical properties of white sandstone under hydrostatic pressure [J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 543–554. DOI: 10.16552/j.cnki.issn1001-1625.2024.02.019.
|
| [22] |
王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005.
WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005.
|
| [23] |
LUNDBERG B. A split Hopkinson bar study of energy absorption in dynamic rock fragmentation [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1976, 13(6): 187–197. DOI: 10.1016/0148-9062(76)91285-7.
|
| [24] |
RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]//Proceedings of the 9th International Symposium on the Effects of Munitions with Structures. Berlin, 1999: 315–322.
|
| [25] |
杜闯, 宋帅, 张江鹏. 爆炸冲击作用下三种混凝土本构模型对比研究 [J]. 兵器装备工程学报, 2022, 43(11): 49–56. DOI: 10.11809/bqzbgcxb2022.11.007.
DU C, SONG S, ZHANG J P. Comparative study on three concrete constitutive models under blast loading [J]. Journal of Ordnance Equipment Engineering, 2022, 43(11): 49–56. DOI: 10.11809/bqzbgcxb2022.11.007.
|
| [26] |
WANG Z L, NI Y, WANG J G, et al. Improvement and performance analysis of constitutive model for rock blasting damage simulation [J]. Simulation Modelling Practice and Theory, 2025, 138: 103043. DOI: 10.1016/j.simpat.2024.103043.
|