Citation: | GUO Qiang, LIU Yindong. On the influence of after-burning effect on implosion characteristics at different energy release rates[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0442 |
[1] |
AMES R G, DROTAR J T, SILBER J, et al. Quantitative distinction between detonation and afterburn energy deposition using pressure-time histories in enclosed explosions [C]//Proceedings of the 13th International Detonation Symposium. Norfolk: Office of Naval Research, 2006: 253–262.
|
[2] |
HOUIM R W. A simplified burn model for simulating explosive effects and afterburning [J]. Shock Waves, 2021, 31(8): 851–875. DOI: 10.1007/s00193-021-01054-2.
|
[3] |
KUHL A L, OPPENHEIM A K, FERGUSON R E, et al. Effects of confinement on combustion of TNT explosion products in air [C]//28th International Symposium on Combustion. Edinburgh: UNT Digital Library, 2000: 3–25.
|
[4] |
KUHL A L, BELL J B, BECKNER V E, et al. Numerical simulations of thermobaric explosions [C]//37th International Annual Conference Energetic Materials Characterisation and Performance of Advanced Systems. Karlsruhe: Lawrence Livermore National Lab, 2007.
|
[5] |
KUHL A L, REICHENBACH H. Combustion effects in confined explosions [J]. Proceedings of the Combustion Institute, 2009, 32(2): 2291–2298. DOI: 10.1016/j.proci.2008.05.001.
|
[6] |
EDRI I, FELDGUN V R, KARINSKI Y S, et al. On blast pressure analysis due to a partially confined explosion: Ⅲ. afterburning effect [J]. International Journal of Protective Structures, 2012, 3(3): 311–331. DOI: 10.1260/2041-4196.3.3.311.
|
[7] |
EDRI I, FELDGUN V R, KARINSKI Y S, et al. Afterburning aspects in an internal TNT explosion [J]. International Journal of Protective Structures, 2013, 4(1): 97–116. DOI: 10.1260/2041-4196.4.1.97.
|
[8] |
EDRI I, FELDGUN V R, KARINSKI Y S, et al. The blast load acting on a structure in an internal explosion scenario [C]//Structures Conference 2018: Blast, Impact Loading, and Response; and Research and Education. Fort Worth: ASCE, 2018: 362–375. DOI: 10.1061/9780784481349.035.
|
[9] |
EDRI I E, GRISARO H Y, YANKELEVSKY D Z. TNT equivalency in an internal explosion event [J]. Journal of Hazardous Materials, 2019, 374: 248–257. DOI: 10.1016/j.jhazmat.2019.04.043.
|
[10] |
FELDGUN V R, KARINSKI Y S, EDRI I, et al. Prediction of the quasi-static pressure in confined and partially confined explosions and its application to blast response simulation of flexible structures [J]. International Journal of Impact Engineering, 2016, 90: 46–60. DOI: 10.1016/j.ijimpeng.2015.12.001.
|
[11] |
DONAHUE L, ZHANG F, RIPLEY R C. Numerical models for afterburning of TNT detonation products in air [J]. Shock Waves, 2013, 23(6): 559–573. DOI: 10.1007/s00193-013-0467-2.
|
[12] |
CAO W, HE Z, CHEN W. Experimental study and numerical simulation of the afterburning of TNT by underwater explosion method [J]. Shock Waves, 2014, 24(6): 619–624. DOI: 10.1007/s00193-014-0527-2.
|
[13] |
CAO W, HE Z Q, CHEN W H. Experimental and numerical study on the afterburning effect of TNT [J]. Materials Science Forum, 2014, 767: 46–51. DOI: 10.4028/www.scientific.net/MSF.767.46.
|
[14] |
HE Z Q, CAO W, CHEN W H, et al. Experimental study on afterburning effect of TNT [C]//LI S, NIU P. 9th International Autumn Seminar on Propellants, Explosives and Pyrotechnics. Beijing: Science Press Beijing, 2011: 20-23.
|
[15] |
SIROTKIN F V, YOH J J. Modeling of afterburning from the particle hydrodynamics of explosive product interface motion [J]. Journal of Mechanical Science and Technology, 2014, 28(11): 4781–4787. DOI: 10.1007/s12206-014-1045-y.
|
[16] |
ZHOU H, ZHENG C, YUE X S, et al. TNT equivalency method in confined space based on steel plate deformation [J]. International Journal of Impact Engineering, 2023, 178: 104587. DOI: 10.1016/j.ijimpeng.2023.104587.
|
[17] |
ZHOU H, YUE X S, ZHENG C, et al. Dynamic behavior of steel plates subjected to confined blast loading considering afterburning effect [J]. International Journal of Impact Engineering, 2024, 188: 104934. DOI: 10.1016/j.ijimpeng.2024.104934.
|
[18] |
KIM H J, HWANG K, YOON Y H, et al. Numerical analysis of the effect of afterburning on damage to the concrete structure under interior explosion [J]. International Journal of Concrete Structures and Materials, 2022, 16(1): 6. DOI: 10.1186/s40069-022-00497-w.
|
[19] |
钟巍, 田宙. 等压假设下考虑化学反应动力学影响的约束爆炸准静态压力的计算 [J]. 爆炸与冲击, 2013, 33(4): 375–380. DOI: 10.3969/j.issn.1001-1455.2013.04.007.
ZHONG W, TIAN Z. Calculation of quasi-static pressures for confined explosions considering chemical reactions under isobaric assumption [J]. Explosion and Shock Waves, 2013, 33(4): 375–380. DOI: 10.3969/j.issn.1001-1455.2013.04.007.
|
[20] |
钟巍, 田宙. 考虑产物化学反应影响的约束爆炸准静态压力数值计算方法 [J]. 爆炸与冲击, 2013, 33(S1): 78–83.
ZHONG W, TIAN Z. Numerical calculation of quasi-static pressures of confined explosions considering chemical reactions kinetic of detonation products [J]. Explosion and Shock Waves, 2013, 33(S1): 78–83. DOI: CNKI:SUN:BZCJ.0.2013-S1-014.
|
[21] |
钟巍, 田宙, 赵阳. 考虑约束爆炸后产物发生化学反应的约束空间内准静态温度计算 [J]. 爆炸与冲击, 2015, 35(6): 777–784. DOI: 10.11883/1001-1455(2015)06-0777-08.
ZHONG W, TIAN Y, ZHAO Y. Calculation of the quasi-static temperature of confined explosions in consideration of the effect of the chemical reactions with detonation products [J]. Explosion and Shock Waves, 2015, 35(6): 777–784. DOI: 10.11883/1001-1455(2015)06-0777-08.
|
[22] |
徐维铮, 吴卫国. 后燃烧效应对约束空间内爆炸载荷的影响规律 [J]. 中国舰船研究, 2019, 14(1): 52–58. DOI: 10.19693/j.issn.1673-3185.01263.
XU W Z, WU W G. Afterburning effect on blast load in confined space [J]. Chinese Journal of Ship Research, 2019, 14(1): 52–58. DOI: 10.19693/j.issn.1673-3185.01263.
|
[23] |
徐维铮, 吴卫国, 况正. 内爆炸后燃烧反应率时间历程理论预估及能量释放常数确定方法 [J]. 中国舰船研究, 2019, 14(4): 22–29. DOI: 10.19693/j.issn.1673-3185.01338.
XU W Z, WU W G, KUANG Z. Method for theoretically predicting time history of afterburning reaction rate of internal explosion and determining energy release constant [J]. Chinese Journal of Ship Research, 2019, 14(4): 22–29. DOI: 10.19693/j.issn.1673-3185.01338.
|
[24] |
徐维铮, 吴卫国. 密闭空间内爆炸准静态压力理论计算研究 [J]. 中国舰船研究, 2019, 14(5): 124–130. DOI: 10.19693/j.issn.1673-3185.01368.
XU W Z, WU W G. Study on theoretical calculation of quasi-static pressure for explosion in confined space [J]. Chinese Journal of Ship Research, 2019, 14(5): 124–130. DOI: 10.19693/j.issn.1673-3185.01368.
|
[25] |
徐维铮, 吴卫国. 考虑后燃烧效应密闭空间内爆炸场数值计算研究 [J]. 含能材料, 2019, 27(8): 661–670. DOI: 10.11943/CJEM2018248.
XU W Z, WU W G. Study on numerical calculation of explosion field in closed space considering after-burning effects [J]. Chinese Journal of Energetic Materials, 2019, 27(8): 661–670. DOI: 10.11943/CJEM2018248.
|
[26] |
辛春亮, 徐更光, 刘科种, 等. 考虑后燃烧效应的TNT空气中爆炸的数值模拟 [J]. 含能材料, 2008, 16(2): 160–163. DOI: 10.3969/j.issn.1006-9941.2008.02.011.
XING C L, XU G G, LIU K Z, et al. Numerical simulation of TNT explosion with post-detonation burning effect in air [J]. Chinese Journal of Energetic Materials, 2008, 16(2): 160–163. DOI: 10.3969/j.issn.1006-9941.2008.02.011.
|
[27] |
孔祥韶, 徐敬博, 徐维铮, 等. 舱室密闭空间中爆炸载荷后燃烧效应数值计算研究 [J]. 兵工学报, 2019, 40(4): 799–806. DOI: 10.3969/j.issn.1000-1093.2019.04.015.
KONG X S, XU J B, XU W Z, et al. Numerical study of influence of afterburning effect on blast load in confined cabin [J]. Acta Armamentarii, 2019, 40(4): 799–806. DOI: 10.3969/j.issn.1000-1093.2019.04.015.
|
[28] |
孔祥韶, 况正, 郑成, 等. 舱室密闭空间中爆炸载荷燃烧增强效应试验研究 [J]. 兵工学报, 2020, 41(1): 75–85. DOI: 10.3969/j.issn.1000-1093.2020.01.009.
KONG X S, KUANG Z, ZHENG C, et al. Experimental study of afterburning enhancement effect for blast load in confined compartment space [J]. Acta Armamentarii, 2020, 41(1): 75–85. DOI: 10.3969/j.issn.1000-1093.2020.01.009.
|
[29] |
孔祥韶, 王子棠, 况正, 等. 密闭空间内爆炸载荷抑制效应实验研究 [J]. 爆炸与冲击, 2021, 41(6): 062901. DOI: 10.11883/bzycj-2020-0193.
KONG X S, WANG Z T, KUANG Z, et al. Experimental study on the mitigation effects of confined-blast loading [J]. Explosion and Shock Waves, 2021, 41(6): 062901. DOI: 10.11883/bzycj-2020-0193.
|
[30] |
岳学森, 周沪, 孔祥韶, 等. 舱室内爆载荷燃烧增强效应试验及仿真研究 [J]. 中国舰船研究, 2023, 18(4): 223–232. DOI: 10.19693/j.issn.1673-3185.02708.
YUE X S, ZHOU H, KONG X S, et al. Experimental and simulation study of afterburning effect for blast load in confined cabin [J]. Chinese Journal of Ship Research, 2023, 18(4): 223–232. DOI: 10.19693/j.issn.1673-3185.02708.
|
[31] |
徐敬博, 卢安格, 周沪, 等. 封闭空间内爆载荷下结构响应试验及仿真研究 [J]. 舰船科学技术, 2024, 46(10): 34–42. DOI: 10.3404/j.issn.1672-7649.2024.10.006.
XU J B, LU A G, ZHOU H, et al. Experimental and simulation research on structural response under blast load in confined space [J]. Ship Science and Technology, 2024, 46(10): 34–42. DOI: 10.3404/j.issn.1672-7649.2024.10.006.
|
[32] |
周沪, 孔祥韶, 罗峰, 等. 基于结构响应的舱室内爆TNT等效方法 [J]. 中国舰船研究, 2024, 19(3): 86–95. DOI: 10.19693/j.issn.1673-3185.03484.
ZHOU H, KONG X S, LUO F, et al. TNT equivalency method in confined cabin based on structural response [J]. Chinese Journal of Ship Research, 2024, 19(3): 86–95. DOI: 10.19693/j.issn.1673-3185.03484.
|
[33] |
王芳, 冯顺山, 俞为民. 爆炸冲击波作用下靶板的塑性大变形响应研究 [J]. 中国安全科学学报, 2003, 13(3): 58–61. DOI: 10.3969/j.issn.1003-3033.2003.03.016.
WANG F, FENG S S, YU W M. Study on large plastic deformation response of target plate under explosive blast wave [J]. China Safety Science Journal, 2003, 13(3): 58–61. DOI: 10.3969/j.issn.1003-3033.2003.03.016.
|
[34] |
U. S. Army Corps of Engineers. Structures to resist the effects of accidental explosions: UFC 3-340-02 [R]. US: Air Force Civil Engineer Support Agency, 2014.
|