• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
GUO Qiang, LIU Yindong. On the influence of after-burning effect on implosion characteristics at different energy release rates[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0442
Citation: GUO Qiang, LIU Yindong. On the influence of after-burning effect on implosion characteristics at different energy release rates[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0442

On the influence of after-burning effect on implosion characteristics at different energy release rates

doi: 10.11883/bzycj-2024-0442
  • Received Date: 2024-11-12
  • Rev Recd Date: 2025-01-18
  • Available Online: 2025-01-21
  • A closed space model was constructed using steel plates to examine the influence of afterburning energy load generated by explosive detonation products on the damage characteristics of confined space. Additionally, the quasi-static pressure in the confined space was simplified by applying the energy conservation law. Relying on the adiabatic index of the mixture of detonation products and air, as well as the complete afterburning degree of detonation products, a simulation method for the afterburning effect was proposed. This method was used to calculate the afterburning energy of detonation products and determine the beginning and ending times of the afterburning effect. The numerical simulation of implosion ruin in a confined space was carried out by this method. The implosion simulation considering the afterburning energy load was performed by employing two simulation methods: constant reaction rate and linearly increasing reaction rate. The results were compared with the implosion simulation results without considering the afterburning effect. The influence and degree of change of the afterburning effect on the implosion damage characteristics were analyzed. It is found that the afterburning effect with different reaction rates has a significant influence on the detonation damage characteristics, except for the temperature, in confined spaces. Moreover, the enhancement effect of the constant reaction rate is the most significant. It increased the velocity and acceleration loads under implosion in the confined space by 42.67% and 71.21%, respectively. The overpressure and quasi-static pressure were increased by 74.42% and 74.95%, respectively, and the kinetic energy was increased by approximately 212%. The proposed simulation method for the afterburning effect can better simulate the dynamic response of implosion ruin in confined spaces and provides a more accurate simulation method of the afterburning effect for the design and evaluation of explosion-proof structures.
  • loading
  • [1]
    AMES R G, DROTAR J T, SILBER J, et al. Quantitative distinction between detonation and afterburn energy deposition using pressure-time histories in enclosed explosions [C]//Proceedings of the 13th International Detonation Symposium. Norfolk: Office of Naval Research, 2006: 253–262.
    [2]
    HOUIM R W. A simplified burn model for simulating explosive effects and afterburning [J]. Shock Waves, 2021, 31(8): 851–875. DOI: 10.1007/s00193-021-01054-2.
    [3]
    KUHL A L, OPPENHEIM A K, FERGUSON R E, et al. Effects of confinement on combustion of TNT explosion products in air [C]//28th International Symposium on Combustion. Edinburgh: UNT Digital Library, 2000: 3–25.
    [4]
    KUHL A L, BELL J B, BECKNER V E, et al. Numerical simulations of thermobaric explosions [C]//37th International Annual Conference Energetic Materials Characterisation and Performance of Advanced Systems. Karlsruhe: Lawrence Livermore National Lab, 2007.
    [5]
    KUHL A L, REICHENBACH H. Combustion effects in confined explosions [J]. Proceedings of the Combustion Institute, 2009, 32(2): 2291–2298. DOI: 10.1016/j.proci.2008.05.001.
    [6]
    EDRI I, FELDGUN V R, KARINSKI Y S, et al. On blast pressure analysis due to a partially confined explosion: Ⅲ. afterburning effect [J]. International Journal of Protective Structures, 2012, 3(3): 311–331. DOI: 10.1260/2041-4196.3.3.311.
    [7]
    EDRI I, FELDGUN V R, KARINSKI Y S, et al. Afterburning aspects in an internal TNT explosion [J]. International Journal of Protective Structures, 2013, 4(1): 97–116. DOI: 10.1260/2041-4196.4.1.97.
    [8]
    EDRI I, FELDGUN V R, KARINSKI Y S, et al. The blast load acting on a structure in an internal explosion scenario [C]//Structures Conference 2018: Blast, Impact Loading, and Response; and Research and Education. Fort Worth: ASCE, 2018: 362–375. DOI: 10.1061/9780784481349.035.
    [9]
    EDRI I E, GRISARO H Y, YANKELEVSKY D Z. TNT equivalency in an internal explosion event [J]. Journal of Hazardous Materials, 2019, 374: 248–257. DOI: 10.1016/j.jhazmat.2019.04.043.
    [10]
    FELDGUN V R, KARINSKI Y S, EDRI I, et al. Prediction of the quasi-static pressure in confined and partially confined explosions and its application to blast response simulation of flexible structures [J]. International Journal of Impact Engineering, 2016, 90: 46–60. DOI: 10.1016/j.ijimpeng.2015.12.001.
    [11]
    DONAHUE L, ZHANG F, RIPLEY R C. Numerical models for afterburning of TNT detonation products in air [J]. Shock Waves, 2013, 23(6): 559–573. DOI: 10.1007/s00193-013-0467-2.
    [12]
    CAO W, HE Z, CHEN W. Experimental study and numerical simulation of the afterburning of TNT by underwater explosion method [J]. Shock Waves, 2014, 24(6): 619–624. DOI: 10.1007/s00193-014-0527-2.
    [13]
    CAO W, HE Z Q, CHEN W H. Experimental and numerical study on the afterburning effect of TNT [J]. Materials Science Forum, 2014, 767: 46–51. DOI: 10.4028/www.scientific.net/MSF.767.46.
    [14]
    HE Z Q, CAO W, CHEN W H, et al. Experimental study on afterburning effect of TNT [C]//LI S, NIU P. 9th International Autumn Seminar on Propellants, Explosives and Pyrotechnics. Beijing: Science Press Beijing, 2011: 20-23.
    [15]
    SIROTKIN F V, YOH J J. Modeling of afterburning from the particle hydrodynamics of explosive product interface motion [J]. Journal of Mechanical Science and Technology, 2014, 28(11): 4781–4787. DOI: 10.1007/s12206-014-1045-y.
    [16]
    ZHOU H, ZHENG C, YUE X S, et al. TNT equivalency method in confined space based on steel plate deformation [J]. International Journal of Impact Engineering, 2023, 178: 104587. DOI: 10.1016/j.ijimpeng.2023.104587.
    [17]
    ZHOU H, YUE X S, ZHENG C, et al. Dynamic behavior of steel plates subjected to confined blast loading considering afterburning effect [J]. International Journal of Impact Engineering, 2024, 188: 104934. DOI: 10.1016/j.ijimpeng.2024.104934.
    [18]
    KIM H J, HWANG K, YOON Y H, et al. Numerical analysis of the effect of afterburning on damage to the concrete structure under interior explosion [J]. International Journal of Concrete Structures and Materials, 2022, 16(1): 6. DOI: 10.1186/s40069-022-00497-w.
    [19]
    钟巍, 田宙. 等压假设下考虑化学反应动力学影响的约束爆炸准静态压力的计算 [J]. 爆炸与冲击, 2013, 33(4): 375–380. DOI: 10.3969/j.issn.1001-1455.2013.04.007.

    ZHONG W, TIAN Z. Calculation of quasi-static pressures for confined explosions considering chemical reactions under isobaric assumption [J]. Explosion and Shock Waves, 2013, 33(4): 375–380. DOI: 10.3969/j.issn.1001-1455.2013.04.007.
    [20]
    钟巍, 田宙. 考虑产物化学反应影响的约束爆炸准静态压力数值计算方法 [J]. 爆炸与冲击, 2013, 33(S1): 78–83.

    ZHONG W, TIAN Z. Numerical calculation of quasi-static pressures of confined explosions considering chemical reactions kinetic of detonation products [J]. Explosion and Shock Waves, 2013, 33(S1): 78–83. DOI: CNKI:SUN:BZCJ.0.2013-S1-014.
    [21]
    钟巍, 田宙, 赵阳. 考虑约束爆炸后产物发生化学反应的约束空间内准静态温度计算 [J]. 爆炸与冲击, 2015, 35(6): 777–784. DOI: 10.11883/1001-1455(2015)06-0777-08.

    ZHONG W, TIAN Y, ZHAO Y. Calculation of the quasi-static temperature of confined explosions in consideration of the effect of the chemical reactions with detonation products [J]. Explosion and Shock Waves, 2015, 35(6): 777–784. DOI: 10.11883/1001-1455(2015)06-0777-08.
    [22]
    徐维铮, 吴卫国. 后燃烧效应对约束空间内爆炸载荷的影响规律 [J]. 中国舰船研究, 2019, 14(1): 52–58. DOI: 10.19693/j.issn.1673-3185.01263.

    XU W Z, WU W G. Afterburning effect on blast load in confined space [J]. Chinese Journal of Ship Research, 2019, 14(1): 52–58. DOI: 10.19693/j.issn.1673-3185.01263.
    [23]
    徐维铮, 吴卫国, 况正. 内爆炸后燃烧反应率时间历程理论预估及能量释放常数确定方法 [J]. 中国舰船研究, 2019, 14(4): 22–29. DOI: 10.19693/j.issn.1673-3185.01338.

    XU W Z, WU W G, KUANG Z. Method for theoretically predicting time history of afterburning reaction rate of internal explosion and determining energy release constant [J]. Chinese Journal of Ship Research, 2019, 14(4): 22–29. DOI: 10.19693/j.issn.1673-3185.01338.
    [24]
    徐维铮, 吴卫国. 密闭空间内爆炸准静态压力理论计算研究 [J]. 中国舰船研究, 2019, 14(5): 124–130. DOI: 10.19693/j.issn.1673-3185.01368.

    XU W Z, WU W G. Study on theoretical calculation of quasi-static pressure for explosion in confined space [J]. Chinese Journal of Ship Research, 2019, 14(5): 124–130. DOI: 10.19693/j.issn.1673-3185.01368.
    [25]
    徐维铮, 吴卫国. 考虑后燃烧效应密闭空间内爆炸场数值计算研究 [J]. 含能材料, 2019, 27(8): 661–670. DOI: 10.11943/CJEM2018248.

    XU W Z, WU W G. Study on numerical calculation of explosion field in closed space considering after-burning effects [J]. Chinese Journal of Energetic Materials, 2019, 27(8): 661–670. DOI: 10.11943/CJEM2018248.
    [26]
    辛春亮, 徐更光, 刘科种, 等. 考虑后燃烧效应的TNT空气中爆炸的数值模拟 [J]. 含能材料, 2008, 16(2): 160–163. DOI: 10.3969/j.issn.1006-9941.2008.02.011.

    XING C L, XU G G, LIU K Z, et al. Numerical simulation of TNT explosion with post-detonation burning effect in air [J]. Chinese Journal of Energetic Materials, 2008, 16(2): 160–163. DOI: 10.3969/j.issn.1006-9941.2008.02.011.
    [27]
    孔祥韶, 徐敬博, 徐维铮, 等. 舱室密闭空间中爆炸载荷后燃烧效应数值计算研究 [J]. 兵工学报, 2019, 40(4): 799–806. DOI: 10.3969/j.issn.1000-1093.2019.04.015.

    KONG X S, XU J B, XU W Z, et al. Numerical study of influence of afterburning effect on blast load in confined cabin [J]. Acta Armamentarii, 2019, 40(4): 799–806. DOI: 10.3969/j.issn.1000-1093.2019.04.015.
    [28]
    孔祥韶, 况正, 郑成, 等. 舱室密闭空间中爆炸载荷燃烧增强效应试验研究 [J]. 兵工学报, 2020, 41(1): 75–85. DOI: 10.3969/j.issn.1000-1093.2020.01.009.

    KONG X S, KUANG Z, ZHENG C, et al. Experimental study of afterburning enhancement effect for blast load in confined compartment space [J]. Acta Armamentarii, 2020, 41(1): 75–85. DOI: 10.3969/j.issn.1000-1093.2020.01.009.
    [29]
    孔祥韶, 王子棠, 况正, 等. 密闭空间内爆炸载荷抑制效应实验研究 [J]. 爆炸与冲击, 2021, 41(6): 062901. DOI: 10.11883/bzycj-2020-0193.

    KONG X S, WANG Z T, KUANG Z, et al. Experimental study on the mitigation effects of confined-blast loading [J]. Explosion and Shock Waves, 2021, 41(6): 062901. DOI: 10.11883/bzycj-2020-0193.
    [30]
    岳学森, 周沪, 孔祥韶, 等. 舱室内爆载荷燃烧增强效应试验及仿真研究 [J]. 中国舰船研究, 2023, 18(4): 223–232. DOI: 10.19693/j.issn.1673-3185.02708.

    YUE X S, ZHOU H, KONG X S, et al. Experimental and simulation study of afterburning effect for blast load in confined cabin [J]. Chinese Journal of Ship Research, 2023, 18(4): 223–232. DOI: 10.19693/j.issn.1673-3185.02708.
    [31]
    徐敬博, 卢安格, 周沪, 等. 封闭空间内爆载荷下结构响应试验及仿真研究 [J]. 舰船科学技术, 2024, 46(10): 34–42. DOI: 10.3404/j.issn.1672-7649.2024.10.006.

    XU J B, LU A G, ZHOU H, et al. Experimental and simulation research on structural response under blast load in confined space [J]. Ship Science and Technology, 2024, 46(10): 34–42. DOI: 10.3404/j.issn.1672-7649.2024.10.006.
    [32]
    周沪, 孔祥韶, 罗峰, 等. 基于结构响应的舱室内爆TNT等效方法 [J]. 中国舰船研究, 2024, 19(3): 86–95. DOI: 10.19693/j.issn.1673-3185.03484.

    ZHOU H, KONG X S, LUO F, et al. TNT equivalency method in confined cabin based on structural response [J]. Chinese Journal of Ship Research, 2024, 19(3): 86–95. DOI: 10.19693/j.issn.1673-3185.03484.
    [33]
    王芳, 冯顺山, 俞为民. 爆炸冲击波作用下靶板的塑性大变形响应研究 [J]. 中国安全科学学报, 2003, 13(3): 58–61. DOI: 10.3969/j.issn.1003-3033.2003.03.016.

    WANG F, FENG S S, YU W M. Study on large plastic deformation response of target plate under explosive blast wave [J]. China Safety Science Journal, 2003, 13(3): 58–61. DOI: 10.3969/j.issn.1003-3033.2003.03.016.
    [34]
    U. S. Army Corps of Engineers. Structures to resist the effects of accidental explosions: UFC 3-340-02 [R]. US: Air Force Civil Engineer Support Agency, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(12)

    Article Metrics

    Article views (135) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return