• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Turn off MathJax
Article Contents
ZHANG Shunyong, CHEN Junhong, ZHANG Bin, LI Jicheng, GONG Qin, HUANG Xicheng. Influence of microstructure and loading conditions on the dynamic tensile property of Ni-based single crystal superalloys[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0448
Citation: ZHANG Shunyong, CHEN Junhong, ZHANG Bin, LI Jicheng, GONG Qin, HUANG Xicheng. Influence of microstructure and loading conditions on the dynamic tensile property of Ni-based single crystal superalloys[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0448

Influence of microstructure and loading conditions on the dynamic tensile property of Ni-based single crystal superalloys

doi: 10.11883/bzycj-2024-0448
  • Received Date: 2024-11-14
  • Rev Recd Date: 2025-03-18
  • Available Online: 2025-03-19
  • To enhance the evaluation and prediction for service performance of hot-end components in equipment under the dynamic loads, a comprehensive study was conducted on Ni-based single crystal superalloys with diverse microstructures. This study involved a series of split Hopkinson tensile bar (SHTB) tests and related scanning electron microscopy (SEM) characterization. The influences of various factors, including the volume fraction of precipitation particles, phase coarsening, loading angle and strain rate, etc., on the dynamic tensile properties of superalloys were systematically investigated. Moreover, the relationships between these factors and the fracture morphology of alloys were thoroughly discussed. The results indicated that the microstructural features and strain rate have significant effect on the dynamic tensile properties of alloys, leading to a complex anisotropic characteristic occur in their dynamic tensile behaviors after phase coarsening. In general, the yielding strength displays a positive relationship with the tensile strength. As the volume fraction of precipitation particles or the strain rate increases, the alloy specimen gradually exhibits brittle fracture characteristics, with an increase in strength and a decrease in elongation. Besides, phase coarsening derived from the aging treatment significantly weakens the strength of alloys while enhancing their elongation, i.e., the specimens progressively show mixed fracture characteristics after phase coarsening, and both yielding strength and tensile ultimate strength gradually decrease while the elongation increases with the degree of phase coarsening. Furthermore, the strength and elongation of alloys at the loading angle of 55° are lower than those at the loading angle of 0°. Comparatively, for alloys with high volume fraction of precipitation particles and high degree of phase coarsening, the elongation achieves the maximum value at the loading angle of 55°. The corresponding variation characteristics are closely related to the fibrous zone and the cleavage plane on the fracture surface. Meanwhile, the variations in microstructure of materials and loading conditions affect the microcrack nucleation and fracture mode within the specimen, leading to various dynamic tensile properties in Ni-based single crystal superalloys. The present research and related results provide theoretical guidance and experimental data support for improving the mechanical performance of Ni-based single crystal superalloys and optimizing the design of hot-end components.
  • loading
  • [1]
    PAN X Y, JIA C L, JI Z Y, et al. Microstructural evolution and dynamic recrystallization mechanism of a heavily-alloyed Ni-based superalloy during hot extrusion [J]. Journal of Materials Research and Technology, 2023, 23: 4922–4937. DOI: 10.1016/j.jmrt.2023.02.118.
    [2]
    GERANMAYEH A, MALEKAN M, FORGHANI F, et al. Microstructural and mechanical investigations on the heat treatment rejuvenation of a long-term service-exposed GTD-111 Ni-based superalloy [J]. Materials Science and Engineering: A, 2023, 862: 144381. DOI: 10.1016/j.msea.2022.144381.
    [3]
    罗宁, 李晓杰, 孙贵磊, 等. 石墨包覆纳米镍颗粒的结构及磁性能的表征 [J]. 爆炸与冲击, 2011, 31(4): 433–438. DOI: 10.11883/1001-1455(2011)04-0433-06.

    LUO N, LI X J, SUN G L, et al. Synthesis, morphology and magnetic properties of graphite-encapsulated nickel nanoparticles [J]. Explosion and Shock Waves, 2011, 31(4): 433–438. DOI: 10.11883/1001-1455(2011)04-0433-06.
    [4]
    WANG K G, WANG G Q, GAMSJÄGER E, et al. A comparison of theory and simulation with microgravity experiments on phase coarsening [J]. Acta Materialia, 2021, 221: 117402. DOI: 10.1016/j.actamat.2021.117402.
    [5]
    REN P R, HUANG W Q, YANG X G, et al. A modified constitutive model considering microstructure degradation of Ni-based superalloys and its application to microstructural damage calculation [J]. Journal of Alloys and Compounds, 2021, 882: 160605. DOI: 10.1016/j.jallcom.2021.160605.
    [6]
    XIE G L, GAO Z F, YU X T, et al. Tension/compression asymmetry of quasi – Static and dynamic mechanical properties in a face centered cubic Ni-W-Co ternary alloy [J]. Journal of Materials Research and Technology, 2022, 18: 2797–2807. DOI: 10.1016/j.jmrt.2022.03.127.
    [7]
    YAN H, WANG K G, GLICKSMAN M E. Microstructural coarsening in dense binary systems [J]. Acta Materialia, 2022, 233: 117964. DOI: 10.1016/j.actamat.2022.117964.
    [8]
    WANG K G. Analytical and numerical modeling of phase coarsening in dense binary systems [J]. Acta Materialia, 2023, 260: 119301. DOI: 10.1016/j.actamat.2023.119301.
    [9]
    LIN Y C, NONG F Q, CHEN X M, et al. Microstructural evolution and constitutive models to predict hot deformation behaviors of a nickel-based superalloy [J]. Vacuum, 2017, 137: 104–114. DOI: 10.1016/j.vacuum.2016.12.022.
    [10]
    XU Y C, GONG Y D, ZHANG W J, et al. Microstructure evolution and dynamic recrystallization mechanism induced by grinding of Ni-based single crystal superalloy [J]. Journal of Materials Processing Technology, 2022, 310: 117784. DOI: 10.1016/j.jmatprotec.2022.117784.
    [11]
    MEYERS M A, CHAWLA K K. Mechanical behavior of materials [M]. 2nd ed. Cambridge: Cambridge University Press, 2008.
    [12]
    JALADURGAM N R, KABRA S, COLLIANDER M H. Macro- and micro-mechanical behaviour of a γ′ strengthened Ni-based superalloy at cryogenic temperatures [J]. Materials & Design, 2021, 209: 109954. DOI: 10.1016/j.matdes.2021.109954.
    [13]
    QU Z H, ZHANG P X, LAI Y J, et al. Influence of powder particle size on the microstructure of a hot isostatically pressed superalloy [J]. Journal of Materials Research and Technology, 2022, 16: 1283–1292. DOI: 10.1016/j.jmrt.2021.12.081.
    [14]
    DUAN J X, AN T, GU Y, et al. Effect of γ’ phase and microtwins on the microstructural evolution and mechanical properties of a novel Ni–Co base superalloy [J]. Materials Science and Engineering: A, 2023, 865: 144323. DOI: 10.1016/j.msea.2022.144323.
    [15]
    TSUKADA Y, MURATA Y, KOYAMA T, et al. Creep deformation and rafting in nickel-based superalloys simulated by the phase-field method using classical flow and creep theories [J]. Acta Materialia, 2011, 59(16): 6378–6386. DOI: 10.1016/j.actamat.2011.06.050.
    [16]
    SHISHVAN S S, MCMEEKING R M, POLLOCK T M, et al. Discrete dislocation plasticity analysis of the effect of interfacial diffusion on the creep response of Ni single-crystal superalloys [J]. Acta Materialia, 2017, 135: 188–200. DOI: 10.1016/j.actamat.2017.06.026.
    [17]
    HASAN M H, SOI C, MIRZAJAVADKHAN A, et al. Experimental study and computer simulation of fracture toughness of Ni base superalloy using CT specimen [J]. International Journal of Engineering Materials and Manufacture, 2018, 3(4): 224–236. DOI: 10.26776/ijemm.03.04.2018.07.
    [18]
    LIU H, ZHAO X B, YUAN Y, et al. Influence of thermal exposure on microstructural stability and tensile properties of a new Ni-base superalloy [J]. Journal of Materials Research and Technology, 2022, 21: 4462–4472. DOI: 10.1016/j.jmrt.2022.11.050.
    [19]
    LIU Z C, NIE Z H, NING X J, et al. Mechanical response and microstructural evolution of Ni-27 W alloys during uniaxial tension [J]. Journal of Alloys and Compounds, 2022, 891: 161972. DOI: 10.1016/j.jallcom.2021.161972.
    [20]
    PAN J, WANG C D, WANG Z X, et al. Microstructure characteristics and properties of a novel Ni-based alloy for thermal neutron and gamma ray co-shielding [J]. Materials Characterization, 2024, 210: 113840. DOI: 10.1016/j.matchar.2024.113840.
    [21]
    HUO J J, SHI Q Y, TIN S, et al. Improvement of creep resistance at 950 °C and 400 MPa in Ru-containing single-crystal superalloys with a high level of Co addition [J]. Metallurgical and Materials Transactions A, 2018, 49(11): 5298–5308. DOI: 10.1007/s11661-018-4842-6.
    [22]
    CAO P S, WANG H, RU Y, et al. Microstructure and creep properties of Ni-based single-crystal superalloys with Mo/Al addition at 760 °C/850 MPa [J]. Rare Metals, 2023, 42(11): 3806–3813. DOI: 10.1007/s12598-018-1094-y.
    [23]
    FIROZ R, BASANTIA S K, KHUTIA N, et al. Effect of microstructural constituents on mechanical properties and fracture toughness of Inconel 718 with anomalous deformation behavior at 650°C [J]. Journal of Alloys and Compounds, 2020, 845: 156276. DOI: 10.1016/j.jallcom.2020.156276.
    [24]
    JI D W, HU X M, ZHAO Z P, et al. Stress rupture life prediction method for notched specimens based on minimum average von mises equivalent stress [J]. Metals, 2022, 12(1): 68. DOI: 10.3390/met12010068.
    [25]
    WEN S M, LIU Z C, MI D, et al. Revealing the fatigue crack propagation mechanism of a Ni-based superalloy electron beam welded joint through in-situ SEM observation [J]. International Journal of Fatigue, 2022, 162: 106955. DOI: 10.1016/j.ijfatigue.2022.106955.
    [26]
    ZHANG L L, YANG Q, CHEN J Y, et al. Phase evolution in Ni-based superalloy K439B during thermal process [J]. Materials Characterization, 2024, 216: 114243. DOI: 10.1016/j.matchar.2024.114243.
    [27]
    崔凯波, 王向东, 熊超, 等. 火炮驻退机节制环耐磨涂层组织及抗冲蚀性能 [J]. 爆炸与冲击, 2018, 38(5): 1013–1022. DOI: 10.11883/bzycj-2017-0039.

    CUI K B, WANG X D, XIONG C, et al. Microstructure and erosive resistance of wear-resistant coating on the throttling ring of gun recoil brake [J]. Explosion and Shock Waves, 2018, 38(5): 1013–1022. DOI: 10.11883/bzycj-2017-0039.
    [28]
    张顺咏, 李继承. 镍基高温合金沉淀相粗化之后的硬度退化及其各向异性特征 [J]. 中国有色金属学报, 2022, 32(10): 3030–3047. DOI: 10.11817/j.ysxb.1004.0609.2021-42811.

    ZHANG S Y, LI J C. Degradation and anisotropy characteristics of hardness in Ni-base superalloys after precipitation phase coarsening [J]. The Chinese Journal of Nonferrous Metals, 2022, 32(10): 3030–3047. DOI: 10.11817/j.ysxb.1004.0609.2021-42811.
    [29]
    ZHANG S Y, ZHANG B, CHEN Y D, et al. Influence of microstructural and loading direction on the ductility and anisotropy of Ni-based superalloys [J]. Materials & Design, 2024, 246: 113342. DOI: 10.1016/j.matdes.2024.113342.
    [30]
    ZHANG S Y, ZHAO J F, LIANG Y X, et al. Degradation and anisotropy characteristics of fracture toughness in Ni-based superalloys after phase coarsening [J]. Materials Science and Engineering: A, 2024, 889: 145852. DOI: 10.1016/j.msea.2023.145852.
    [31]
    YU Y C, RU Y, SHANG Y, et al. Effect of applied stress on γ’-rafting behavior in a Ni-based single-crystal superalloy: experiments and finite element analysis [J]. Journal of Iron and Steel Research International, 2019, 26(3): 259–267. DOI: 10.1007/s42243-018-0076-5.
    [32]
    LIU X, LIU Z L, ZHANG L T, et al. Increased tensile strength and elongation of the Ni–Fe based polycrystalline cast superalloy via the trace addition of TiC nanoparticles [J]. Materials Science and Engineering: A, 2021, 827: 141988. DOI: 10.1016/j.msea.2021.141988.
    [33]
    YIN Q, LIAN Y D, WEN Z X, et al. Atomic simulation of the effect of orientation on tensile/compressive properties in nickel-based single crystal superalloys [J]. Journal of Alloys and Compounds, 2022, 893: 162210. DOI: 10.1016/j.jallcom.2021.162210.
    [34]
    ZHANG X Y, LIANG Y F, YI F, et al. Anisotropy in microstructure and mechanical properties of additively manufactured Ni-based GH4099 alloy [J]. Journal of Materials Research and Technology, 2023, 26: 6552–6564. DOI: 10.1016/j.jmrt.2023.09.038.
    [35]
    DONG H C, CHEN Y H, WU D Y, et al. Molecular dynamics simulation of tensile properties of nickel-based superalloy with temperature and Co [J]. Materials Chemistry and Physics, 2024, 326: 129635. DOI: 10.1016/j.matchemphys.2024.129635.
    [36]
    REN Q, CHEN J T, LU J X, et al. In-situ study of microstructure and mechanical properties of GH3536 alloy manufactured by selective laser melting at 750°C [J]. Materials Science and Engineering: A, 2024, 900: 146452. DOI: 10.1016/j.msea.2024.146452.
    [37]
    吴宇, 陈冰清, 刘伟, 等. 增材制造镍基高温合金在航空发动机与燃气轮机中的研究应用进展 [J]. 航空材料学报, 2024, 44(1): 31–45. DOI: 10.11868/j.issn.1005-5053.2023.000211.

    WU Y, CHEN B Q, LIU W, et al. Progress in research and applications of additively manufactured nickel-based superalloy in aero-engines and gas turbines [J]. Journal of Aeronautical Materials, 2024, 44(1): 31–45. DOI: 10.11868/j.issn.1005-5053.2023.000211.
    [38]
    LI J C, WANG K G. Effect of phase coarsening on the mechanical properties of alloys: I. Numerical simulations [J]. Engineering Fracture Mechanics, 2018, 201: 229–245. DOI: 10.1016/j.engfracmech.2018.06.028.
    [39]
    YUAN K B, GUO W G, LI D W, et al. Influence of heat treatments on plastic flow of laser deposited Inconel 718: Testing and microstructural based constitutive modeling [J]. International Journal of Plasticity, 2021, 136: 102865. DOI: 10.1016/j.ijplas.2020.102865.
    [40]
    史亚辉, 杨璞, 邓志方, 等. 螺栓连接结构冲击载荷传递特性及冲击响应行为研究进展综述 [J]. 包装工程, 2024, 45(19): 1–28. DOI: 10.19554/j.cnki.1001-3563.2024.19.001.

    SHI Y H, YANG P, DENG Z F, et al. Research advance on impact load transfer characteristics and impact response behavior of bolted connection structures [J]. Packaging Engineering, 2024, 45(19): 1–28. DOI: 10.19554/j.cnki.1001-3563.2024.19.001.
    [41]
    ITURBE A, GIRAUD E, HORMAETXE E, et al. Mechanical characterization and modelling of Inconel 718 material behavior for machining process assessment [J]. Materials Science and Engineering: A, 2017, 682: 441–453. DOI: 10.1016/j.msea.2016.11.054.
    [42]
    ZHOU S Y, HU M H, LI C, et al. Microstructure-performance relationships in Ni-based superalloy with coprecipitation of γ' and γ'' phases [J]. Materials Science and Engineering: A, 2022, 855: 143954. DOI: 10.1016/j.msea.2022.143954.
    [43]
    JIANG W, XU P W, LI Y Y, et al. Effect of a gradient structure on the mechanical performance of Inconel 718 Ni-based superalloy at elevated temperatures [J]. Journal of Materials Research and Technology, 2023, 23: 2031–2042. DOI: 10.1016/j.jmrt.2023.01.121.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(1)

    Article Metrics

    Article views (117) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return