Citation: | ZHANG Shunyong, CHEN Junhong, ZHANG Bin, LI Jicheng, GONG Qin, HUANG Xicheng. Influence of microstructure and loading conditions on the dynamic tensile property of Ni-based single crystal superalloys[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0448 |
[1] |
PAN X Y, JIA C L, JI Z Y, et al. Microstructural evolution and dynamic recrystallization mechanism of a heavily-alloyed Ni-based superalloy during hot extrusion [J]. Journal of Materials Research and Technology, 2023, 23: 4922–4937. DOI: 10.1016/j.jmrt.2023.02.118.
|
[2] |
GERANMAYEH A, MALEKAN M, FORGHANI F, et al. Microstructural and mechanical investigations on the heat treatment rejuvenation of a long-term service-exposed GTD-111 Ni-based superalloy [J]. Materials Science and Engineering: A, 2023, 862: 144381. DOI: 10.1016/j.msea.2022.144381.
|
[3] |
罗宁, 李晓杰, 孙贵磊, 等. 石墨包覆纳米镍颗粒的结构及磁性能的表征 [J]. 爆炸与冲击, 2011, 31(4): 433–438. DOI: 10.11883/1001-1455(2011)04-0433-06.
LUO N, LI X J, SUN G L, et al. Synthesis, morphology and magnetic properties of graphite-encapsulated nickel nanoparticles [J]. Explosion and Shock Waves, 2011, 31(4): 433–438. DOI: 10.11883/1001-1455(2011)04-0433-06.
|
[4] |
WANG K G, WANG G Q, GAMSJÄGER E, et al. A comparison of theory and simulation with microgravity experiments on phase coarsening [J]. Acta Materialia, 2021, 221: 117402. DOI: 10.1016/j.actamat.2021.117402.
|
[5] |
REN P R, HUANG W Q, YANG X G, et al. A modified constitutive model considering microstructure degradation of Ni-based superalloys and its application to microstructural damage calculation [J]. Journal of Alloys and Compounds, 2021, 882: 160605. DOI: 10.1016/j.jallcom.2021.160605.
|
[6] |
XIE G L, GAO Z F, YU X T, et al. Tension/compression asymmetry of quasi – Static and dynamic mechanical properties in a face centered cubic Ni-W-Co ternary alloy [J]. Journal of Materials Research and Technology, 2022, 18: 2797–2807. DOI: 10.1016/j.jmrt.2022.03.127.
|
[7] |
YAN H, WANG K G, GLICKSMAN M E. Microstructural coarsening in dense binary systems [J]. Acta Materialia, 2022, 233: 117964. DOI: 10.1016/j.actamat.2022.117964.
|
[8] |
WANG K G. Analytical and numerical modeling of phase coarsening in dense binary systems [J]. Acta Materialia, 2023, 260: 119301. DOI: 10.1016/j.actamat.2023.119301.
|
[9] |
LIN Y C, NONG F Q, CHEN X M, et al. Microstructural evolution and constitutive models to predict hot deformation behaviors of a nickel-based superalloy [J]. Vacuum, 2017, 137: 104–114. DOI: 10.1016/j.vacuum.2016.12.022.
|
[10] |
XU Y C, GONG Y D, ZHANG W J, et al. Microstructure evolution and dynamic recrystallization mechanism induced by grinding of Ni-based single crystal superalloy [J]. Journal of Materials Processing Technology, 2022, 310: 117784. DOI: 10.1016/j.jmatprotec.2022.117784.
|
[11] |
MEYERS M A, CHAWLA K K. Mechanical behavior of materials [M]. 2nd ed. Cambridge: Cambridge University Press, 2008.
|
[12] |
JALADURGAM N R, KABRA S, COLLIANDER M H. Macro- and micro-mechanical behaviour of a γ′ strengthened Ni-based superalloy at cryogenic temperatures [J]. Materials & Design, 2021, 209: 109954. DOI: 10.1016/j.matdes.2021.109954.
|
[13] |
QU Z H, ZHANG P X, LAI Y J, et al. Influence of powder particle size on the microstructure of a hot isostatically pressed superalloy [J]. Journal of Materials Research and Technology, 2022, 16: 1283–1292. DOI: 10.1016/j.jmrt.2021.12.081.
|
[14] |
DUAN J X, AN T, GU Y, et al. Effect of γ’ phase and microtwins on the microstructural evolution and mechanical properties of a novel Ni–Co base superalloy [J]. Materials Science and Engineering: A, 2023, 865: 144323. DOI: 10.1016/j.msea.2022.144323.
|
[15] |
TSUKADA Y, MURATA Y, KOYAMA T, et al. Creep deformation and rafting in nickel-based superalloys simulated by the phase-field method using classical flow and creep theories [J]. Acta Materialia, 2011, 59(16): 6378–6386. DOI: 10.1016/j.actamat.2011.06.050.
|
[16] |
SHISHVAN S S, MCMEEKING R M, POLLOCK T M, et al. Discrete dislocation plasticity analysis of the effect of interfacial diffusion on the creep response of Ni single-crystal superalloys [J]. Acta Materialia, 2017, 135: 188–200. DOI: 10.1016/j.actamat.2017.06.026.
|
[17] |
HASAN M H, SOI C, MIRZAJAVADKHAN A, et al. Experimental study and computer simulation of fracture toughness of Ni base superalloy using CT specimen [J]. International Journal of Engineering Materials and Manufacture, 2018, 3(4): 224–236. DOI: 10.26776/ijemm.03.04.2018.07.
|
[18] |
LIU H, ZHAO X B, YUAN Y, et al. Influence of thermal exposure on microstructural stability and tensile properties of a new Ni-base superalloy [J]. Journal of Materials Research and Technology, 2022, 21: 4462–4472. DOI: 10.1016/j.jmrt.2022.11.050.
|
[19] |
LIU Z C, NIE Z H, NING X J, et al. Mechanical response and microstructural evolution of Ni-27 W alloys during uniaxial tension [J]. Journal of Alloys and Compounds, 2022, 891: 161972. DOI: 10.1016/j.jallcom.2021.161972.
|
[20] |
PAN J, WANG C D, WANG Z X, et al. Microstructure characteristics and properties of a novel Ni-based alloy for thermal neutron and gamma ray co-shielding [J]. Materials Characterization, 2024, 210: 113840. DOI: 10.1016/j.matchar.2024.113840.
|
[21] |
HUO J J, SHI Q Y, TIN S, et al. Improvement of creep resistance at 950 °C and 400 MPa in Ru-containing single-crystal superalloys with a high level of Co addition [J]. Metallurgical and Materials Transactions A, 2018, 49(11): 5298–5308. DOI: 10.1007/s11661-018-4842-6.
|
[22] |
CAO P S, WANG H, RU Y, et al. Microstructure and creep properties of Ni-based single-crystal superalloys with Mo/Al addition at 760 °C/850 MPa [J]. Rare Metals, 2023, 42(11): 3806–3813. DOI: 10.1007/s12598-018-1094-y.
|
[23] |
FIROZ R, BASANTIA S K, KHUTIA N, et al. Effect of microstructural constituents on mechanical properties and fracture toughness of Inconel 718 with anomalous deformation behavior at 650°C [J]. Journal of Alloys and Compounds, 2020, 845: 156276. DOI: 10.1016/j.jallcom.2020.156276.
|
[24] |
JI D W, HU X M, ZHAO Z P, et al. Stress rupture life prediction method for notched specimens based on minimum average von mises equivalent stress [J]. Metals, 2022, 12(1): 68. DOI: 10.3390/met12010068.
|
[25] |
WEN S M, LIU Z C, MI D, et al. Revealing the fatigue crack propagation mechanism of a Ni-based superalloy electron beam welded joint through in-situ SEM observation [J]. International Journal of Fatigue, 2022, 162: 106955. DOI: 10.1016/j.ijfatigue.2022.106955.
|
[26] |
ZHANG L L, YANG Q, CHEN J Y, et al. Phase evolution in Ni-based superalloy K439B during thermal process [J]. Materials Characterization, 2024, 216: 114243. DOI: 10.1016/j.matchar.2024.114243.
|
[27] |
崔凯波, 王向东, 熊超, 等. 火炮驻退机节制环耐磨涂层组织及抗冲蚀性能 [J]. 爆炸与冲击, 2018, 38(5): 1013–1022. DOI: 10.11883/bzycj-2017-0039.
CUI K B, WANG X D, XIONG C, et al. Microstructure and erosive resistance of wear-resistant coating on the throttling ring of gun recoil brake [J]. Explosion and Shock Waves, 2018, 38(5): 1013–1022. DOI: 10.11883/bzycj-2017-0039.
|
[28] |
张顺咏, 李继承. 镍基高温合金沉淀相粗化之后的硬度退化及其各向异性特征 [J]. 中国有色金属学报, 2022, 32(10): 3030–3047. DOI: 10.11817/j.ysxb.1004.0609.2021-42811.
ZHANG S Y, LI J C. Degradation and anisotropy characteristics of hardness in Ni-base superalloys after precipitation phase coarsening [J]. The Chinese Journal of Nonferrous Metals, 2022, 32(10): 3030–3047. DOI: 10.11817/j.ysxb.1004.0609.2021-42811.
|
[29] |
ZHANG S Y, ZHANG B, CHEN Y D, et al. Influence of microstructural and loading direction on the ductility and anisotropy of Ni-based superalloys [J]. Materials & Design, 2024, 246: 113342. DOI: 10.1016/j.matdes.2024.113342.
|
[30] |
ZHANG S Y, ZHAO J F, LIANG Y X, et al. Degradation and anisotropy characteristics of fracture toughness in Ni-based superalloys after phase coarsening [J]. Materials Science and Engineering: A, 2024, 889: 145852. DOI: 10.1016/j.msea.2023.145852.
|
[31] |
YU Y C, RU Y, SHANG Y, et al. Effect of applied stress on γ’-rafting behavior in a Ni-based single-crystal superalloy: experiments and finite element analysis [J]. Journal of Iron and Steel Research International, 2019, 26(3): 259–267. DOI: 10.1007/s42243-018-0076-5.
|
[32] |
LIU X, LIU Z L, ZHANG L T, et al. Increased tensile strength and elongation of the Ni–Fe based polycrystalline cast superalloy via the trace addition of TiC nanoparticles [J]. Materials Science and Engineering: A, 2021, 827: 141988. DOI: 10.1016/j.msea.2021.141988.
|
[33] |
YIN Q, LIAN Y D, WEN Z X, et al. Atomic simulation of the effect of orientation on tensile/compressive properties in nickel-based single crystal superalloys [J]. Journal of Alloys and Compounds, 2022, 893: 162210. DOI: 10.1016/j.jallcom.2021.162210.
|
[34] |
ZHANG X Y, LIANG Y F, YI F, et al. Anisotropy in microstructure and mechanical properties of additively manufactured Ni-based GH4099 alloy [J]. Journal of Materials Research and Technology, 2023, 26: 6552–6564. DOI: 10.1016/j.jmrt.2023.09.038.
|
[35] |
DONG H C, CHEN Y H, WU D Y, et al. Molecular dynamics simulation of tensile properties of nickel-based superalloy with temperature and Co [J]. Materials Chemistry and Physics, 2024, 326: 129635. DOI: 10.1016/j.matchemphys.2024.129635.
|
[36] |
REN Q, CHEN J T, LU J X, et al. In-situ study of microstructure and mechanical properties of GH3536 alloy manufactured by selective laser melting at 750°C [J]. Materials Science and Engineering: A, 2024, 900: 146452. DOI: 10.1016/j.msea.2024.146452.
|
[37] |
吴宇, 陈冰清, 刘伟, 等. 增材制造镍基高温合金在航空发动机与燃气轮机中的研究应用进展 [J]. 航空材料学报, 2024, 44(1): 31–45. DOI: 10.11868/j.issn.1005-5053.2023.000211.
WU Y, CHEN B Q, LIU W, et al. Progress in research and applications of additively manufactured nickel-based superalloy in aero-engines and gas turbines [J]. Journal of Aeronautical Materials, 2024, 44(1): 31–45. DOI: 10.11868/j.issn.1005-5053.2023.000211.
|
[38] |
LI J C, WANG K G. Effect of phase coarsening on the mechanical properties of alloys: I. Numerical simulations [J]. Engineering Fracture Mechanics, 2018, 201: 229–245. DOI: 10.1016/j.engfracmech.2018.06.028.
|
[39] |
YUAN K B, GUO W G, LI D W, et al. Influence of heat treatments on plastic flow of laser deposited Inconel 718: Testing and microstructural based constitutive modeling [J]. International Journal of Plasticity, 2021, 136: 102865. DOI: 10.1016/j.ijplas.2020.102865.
|
[40] |
史亚辉, 杨璞, 邓志方, 等. 螺栓连接结构冲击载荷传递特性及冲击响应行为研究进展综述 [J]. 包装工程, 2024, 45(19): 1–28. DOI: 10.19554/j.cnki.1001-3563.2024.19.001.
SHI Y H, YANG P, DENG Z F, et al. Research advance on impact load transfer characteristics and impact response behavior of bolted connection structures [J]. Packaging Engineering, 2024, 45(19): 1–28. DOI: 10.19554/j.cnki.1001-3563.2024.19.001.
|
[41] |
ITURBE A, GIRAUD E, HORMAETXE E, et al. Mechanical characterization and modelling of Inconel 718 material behavior for machining process assessment [J]. Materials Science and Engineering: A, 2017, 682: 441–453. DOI: 10.1016/j.msea.2016.11.054.
|
[42] |
ZHOU S Y, HU M H, LI C, et al. Microstructure-performance relationships in Ni-based superalloy with coprecipitation of γ' and γ'' phases [J]. Materials Science and Engineering: A, 2022, 855: 143954. DOI: 10.1016/j.msea.2022.143954.
|
[43] |
JIANG W, XU P W, LI Y Y, et al. Effect of a gradient structure on the mechanical performance of Inconel 718 Ni-based superalloy at elevated temperatures [J]. Journal of Materials Research and Technology, 2023, 23: 2031–2042. DOI: 10.1016/j.jmrt.2023.01.121.
|